Semi-mechanistic population PK/PD model to aid clinical understanding of myelodysplastic syndromes following treatment with Venetoclax and Azacitidine.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Neha Thakre, Corinna Maier, Jiuhong Zha, Benjamin Engelhardt, Johannes E Wolff, Sven Mensing
{"title":"Semi-mechanistic population PK/PD model to aid clinical understanding of myelodysplastic syndromes following treatment with Venetoclax and Azacitidine.","authors":"Neha Thakre, Corinna Maier, Jiuhong Zha, Benjamin Engelhardt, Johannes E Wolff, Sven Mensing","doi":"10.1002/psp4.13284","DOIUrl":null,"url":null,"abstract":"<p><p>Myelodysplastic syndromes (MDS) represent a group of bone marrow disorders involving cytopenias, hypercellular bone marrow, and dysplastic hematopoietic progenitors. MDS remains a challenge to treat due to the complex interplay between disease-induced and treatment-related cytopenias. Venetoclax, a selective BCL-2 inhibitor, in combination with azacitidine, a hypomethylating agent, is currently being investigated in patients with previously untreated higher-risk MDS. We present an integrated semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model developed using preliminary clinical data from an ongoing Phase 1b study evaluating the safety and efficacy of venetoclax in combination with azacitidine in treatment-naïve patients with higher-risk MDS. Longitudinal data from 57 patients were used to develop the model, which accounted for venetoclax PK and azacitidine treatment to describe time dynamics of bone marrow blasts, neutrophils, red blood cells, and platelets. The proliferation and maturation of progenitor cells in the bone marrow to peripheral cells is described via three parallel connected transit models including feedback terms. The model also accounted for bone marrow crowding and its impact on hematopoiesis. Model validation demonstrated adequate goodness-of-fit, visual and numerical predictive checks. Model predicted complete remission (CR) rates and marrow complete remission (mCR) rates closely matched observed rates in the clinical study, and simulated efficacy (recovery of blast count, CR, and mCR rates) and safety (neutropenia and thrombocytopenia) endpoints aligned with expected outcomes from various dosing regimens. Importantly, the semi-mechanistic model may aid understanding and discriminating between disease-driven and drug-induced cytopenias.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13284","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Myelodysplastic syndromes (MDS) represent a group of bone marrow disorders involving cytopenias, hypercellular bone marrow, and dysplastic hematopoietic progenitors. MDS remains a challenge to treat due to the complex interplay between disease-induced and treatment-related cytopenias. Venetoclax, a selective BCL-2 inhibitor, in combination with azacitidine, a hypomethylating agent, is currently being investigated in patients with previously untreated higher-risk MDS. We present an integrated semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model developed using preliminary clinical data from an ongoing Phase 1b study evaluating the safety and efficacy of venetoclax in combination with azacitidine in treatment-naïve patients with higher-risk MDS. Longitudinal data from 57 patients were used to develop the model, which accounted for venetoclax PK and azacitidine treatment to describe time dynamics of bone marrow blasts, neutrophils, red blood cells, and platelets. The proliferation and maturation of progenitor cells in the bone marrow to peripheral cells is described via three parallel connected transit models including feedback terms. The model also accounted for bone marrow crowding and its impact on hematopoiesis. Model validation demonstrated adequate goodness-of-fit, visual and numerical predictive checks. Model predicted complete remission (CR) rates and marrow complete remission (mCR) rates closely matched observed rates in the clinical study, and simulated efficacy (recovery of blast count, CR, and mCR rates) and safety (neutropenia and thrombocytopenia) endpoints aligned with expected outcomes from various dosing regimens. Importantly, the semi-mechanistic model may aid understanding and discriminating between disease-driven and drug-induced cytopenias.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信