Ex vivo assessment of sulbactam-durlobactam clearance during continuous renal replacement therapy to guide dosing recommendations.

IF 4.1 2区 医学 Q2 MICROBIOLOGY
Yasmeen Abouelhassan, Yuwei Shen, April Chen, Xiaoyi Ye, David P Nicolau, Joseph L Kuti
{"title":"<i>Ex vivo</i> assessment of sulbactam-durlobactam clearance during continuous renal replacement therapy to guide dosing recommendations.","authors":"Yasmeen Abouelhassan, Yuwei Shen, April Chen, Xiaoyi Ye, David P Nicolau, Joseph L Kuti","doi":"10.1128/aac.01674-23","DOIUrl":null,"url":null,"abstract":"<p><p>Sulbactam-durlobactam is approved for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible isolates of <i>Acinetobacter baumannii-calcoaceticus</i> complex. Patients with serious <i>Acinetobacter</i> infections may require support with continuous renal replacement therapy (CRRT), which presents challenges for optimal dosing of antibiotics. Sulbactam-durlobactam dosing regimens were derived for this population using an <i>ex vivo</i> CRRT model and Monte Carlo simulation (MCS). Transmembrane clearance (CL<sub>TM</sub>) was determined in hemofiltration (CVVH) and hemodialysis (CVVHD) modes using the Prismaflex M100 and HF1400 hemofilter sets and with effluent rates of 1, 2, and 3 L/h. Pre-filter, post-filter blood, and effluent samples were collected over 60 min to calculate sieving (SC) and saturation (SA) coefficients for CVVH and CVVHD, respectively. An established population pharmacokinetic model was integrated with the CL<sub>TM</sub>; then, a 1,000 patient MCS was conducted to determine exposures of potential dosing regimens. Adsorption and degradation in the <i>ex vivo</i> CRRT model were negligible. The overall mean ± standard deviation SC/SA was 1.14 ± 0.12 and 0.93 ± 0.08 for sulbactam and durlobactam, respectively. In multivariable regression analyses, effluent rate was the primary driver of CL<sub>TM</sub> for both drugs. For effluent rates <3 L/h, sulbactam-durlobactam 1 g-1g q8h as 3 h infusion achieved a high probability of pharmacodynamic target attainment while retaining area under the curve exposures consistent with the standard dose in non-CRRT patients. For effluent rates ≥3 to 5 L/h, the optimal regimen was 1 g-1g q6h 3 h infusion. Sulbactam-durlobactam regimens that provide optimum drug exposures for efficacy and safety were identified for CRRT based on the prescribed effluent rate.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0167423"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.01674-23","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulbactam-durlobactam is approved for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible isolates of Acinetobacter baumannii-calcoaceticus complex. Patients with serious Acinetobacter infections may require support with continuous renal replacement therapy (CRRT), which presents challenges for optimal dosing of antibiotics. Sulbactam-durlobactam dosing regimens were derived for this population using an ex vivo CRRT model and Monte Carlo simulation (MCS). Transmembrane clearance (CLTM) was determined in hemofiltration (CVVH) and hemodialysis (CVVHD) modes using the Prismaflex M100 and HF1400 hemofilter sets and with effluent rates of 1, 2, and 3 L/h. Pre-filter, post-filter blood, and effluent samples were collected over 60 min to calculate sieving (SC) and saturation (SA) coefficients for CVVH and CVVHD, respectively. An established population pharmacokinetic model was integrated with the CLTM; then, a 1,000 patient MCS was conducted to determine exposures of potential dosing regimens. Adsorption and degradation in the ex vivo CRRT model were negligible. The overall mean ± standard deviation SC/SA was 1.14 ± 0.12 and 0.93 ± 0.08 for sulbactam and durlobactam, respectively. In multivariable regression analyses, effluent rate was the primary driver of CLTM for both drugs. For effluent rates <3 L/h, sulbactam-durlobactam 1 g-1g q8h as 3 h infusion achieved a high probability of pharmacodynamic target attainment while retaining area under the curve exposures consistent with the standard dose in non-CRRT patients. For effluent rates ≥3 to 5 L/h, the optimal regimen was 1 g-1g q6h 3 h infusion. Sulbactam-durlobactam regimens that provide optimum drug exposures for efficacy and safety were identified for CRRT based on the prescribed effluent rate.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信