CoSe QDs/Sn3O4 PCNFs with high catalytic conversion kinetics towards high-efficiency Li-S batteries.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xiaoke Luo, Di Wang, Shiyi Liu, Hailong Yan, Jinbing Cheng, Yang Lu, Deyang Zhang, Huan Pang
{"title":"CoSe QDs/Sn<sub>3</sub>O<sub>4</sub> PCNFs with high catalytic conversion kinetics towards high-efficiency Li-S batteries.","authors":"Xiaoke Luo, Di Wang, Shiyi Liu, Hailong Yan, Jinbing Cheng, Yang Lu, Deyang Zhang, Huan Pang","doi":"10.1016/j.jcis.2024.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>The redox reactions occurring at positive electrode of the lithium-sulfur (Li-S) batteries involve several key electrocatalytic processes that significantly impact the overall performance of the electrochemical energy storage system. This study presents a heterogeneous catalytic composite material composed of CoSe quantum dots (QDs) integrated with Sn<sub>3</sub>O<sub>4</sub> nanosheets, which enhances the overall ionic conductivity and accessibility of active sites within the cathode. This controlled migration effectively traps polysulfides within the cathode, reducing their dissolution into the electrolyte and mitigating the shuttle effect. Li-S batteries incorporating CoSe QDs/Sn<sub>3</sub>O<sub>4</sub> porous carbon nanofibers (PCNFs) demonstrate a high discharge capacity of 1596.9 mAh g<sup>-1</sup> at 0.1 C, along with remarkable cycling stability, achieving 1500 cycles at 2 C with a minimal capacity decay of 0.024 % per cycle. Even under a high sulfur loading conditions of 8.61  mg cm<sup>-2</sup> and a low electrolyte to sulfur ratio of approximately 4.6 μL mg<sup>-1</sup>, the CoSe QDs/Sn<sub>3</sub>O<sub>4</sub> PCNFs cathode delivers an initial discharge-specific capacity of 732.0 mAh g<sup>-1</sup> at 0.2 C. Through this method, we accomplished the size control and uniform distribution of CoSe QDs, and this method can be extended to the synthesis of other metal oxide and metal sulfide QDs, offering a novel idea for the application of QDs in polysulfide catalysis.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"884-893"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The redox reactions occurring at positive electrode of the lithium-sulfur (Li-S) batteries involve several key electrocatalytic processes that significantly impact the overall performance of the electrochemical energy storage system. This study presents a heterogeneous catalytic composite material composed of CoSe quantum dots (QDs) integrated with Sn3O4 nanosheets, which enhances the overall ionic conductivity and accessibility of active sites within the cathode. This controlled migration effectively traps polysulfides within the cathode, reducing their dissolution into the electrolyte and mitigating the shuttle effect. Li-S batteries incorporating CoSe QDs/Sn3O4 porous carbon nanofibers (PCNFs) demonstrate a high discharge capacity of 1596.9 mAh g-1 at 0.1 C, along with remarkable cycling stability, achieving 1500 cycles at 2 C with a minimal capacity decay of 0.024 % per cycle. Even under a high sulfur loading conditions of 8.61  mg cm-2 and a low electrolyte to sulfur ratio of approximately 4.6 μL mg-1, the CoSe QDs/Sn3O4 PCNFs cathode delivers an initial discharge-specific capacity of 732.0 mAh g-1 at 0.2 C. Through this method, we accomplished the size control and uniform distribution of CoSe QDs, and this method can be extended to the synthesis of other metal oxide and metal sulfide QDs, offering a novel idea for the application of QDs in polysulfide catalysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
文献相关原料
公司名称 产品信息 采购帮参考价格
麦克林 Se powder
麦克林 Se powder
阿拉丁 Polyacrylonitrile (PAN)
阿拉丁 Polymethyl methacrylate (PMMA)
阿拉丁 N,N-dimethylformamide (DMF)
阿拉丁 Polyvinylpyrrolidone (PVP)
阿拉丁 Sulfur powder
阿拉丁 Li2S
阿拉丁 Polyacrylonitrile (PAN)
阿拉丁 Polyvinylpyrrolidone (PVP)
阿拉丁 Polymethyl methacrylate (PMMA)
阿拉丁 N, N-dimethylformamide (DMF)
阿拉丁 Li2S
阿拉丁 Sulfur powder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信