Synthesis and Preclinical Evaluation of Dual-Specific Probe Targeting Glypican-3 and Prostate-Specific Membrane Antigen for Hepatocellular Carcinoma PET Imaging.
{"title":"Synthesis and Preclinical Evaluation of Dual-Specific Probe Targeting Glypican-3 and Prostate-Specific Membrane Antigen for Hepatocellular Carcinoma PET Imaging.","authors":"Lixing Chen, Siyuan Cheng, Dongling Zhu, Guangfa Bao, Ziqiang Wang, Xiaoyun Deng, Xiaoguang Liu, Xiang Ma, Jun Zhao, Lei Zhu, Xiaohua Zhu","doi":"10.1021/acs.molpharmaceut.4c00838","DOIUrl":null,"url":null,"abstract":"<p><p>Positron emission tomography (PET) is a promising modality for early diagnosis, accurate detection, and staging of hepatocellular carcinoma (HCC). Hereby, a dual-specific probe targeting Glypican-3 (GPC3) and prostate-specific membrane antigen (PSMA) was evaluated for HCC PET imaging. The probe was prepared by conjugating TJ12P2, a GPC3-targeting peptide previously reported by our group, to a highly potent PSMA inhibitor via a polyethylene glycol linker and further tethered to the 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator. The resultant probe, NOTA-TJ12P2-PSMA, abbreviated as T2P, was labeled with gallium-68 and fluorine-18, respectively, and evaluated in murine HCC models of various levels of GPC3 and PSMA expression. Targeting specificity was confirmed by blocking studies. The synthesized [<sup>68</sup>Ga]Ga-T2P and [<sup>18</sup>F]AlF-T2P were stable in saline and fetal bovine serum for over 2 h, and bound to their respective targets with high affinity and specificity in cell assays. PET imaging at 60 min postinjection (p.i.) showed that [<sup>68</sup>Ga]Ga-T2P exhibited higher uptake (1.75 ± 0.16%ID/g) in Huh7 models with high expression of GPC3 and PSMA than gallium-68 labeled TJ12P2 (1.25 ± 0.07%ID/g, <i>p</i> < 0.01) or gallium-68 labeled PSMA-617 (1.07 ± 0.06%ID/g, <i>p < 0.001</i>). The uptake of [<sup>68</sup>Ga]Ga-T2P in Huh7 tumors was higher than that in PC-3 tumors with low expression of GPC3 or PSMA (0.55 ± 0.24%ID/g, <i>p</i> < 0.01). The uptake of [<sup>18</sup>F]AlF-T2P or [<sup>68</sup>Ga]Ga-T2P in the Huh7 tumor was substantially blocked by TJ12P2, TJ12P2 + PSMA, or T2P, but only partially blocked by PSMA. And the PSMA and TJ12P2 monomer blocking effect was less than that of TJ12P2 + PSMA and T2P. [<sup>18</sup>F]AlF-T2P had higher tumor-to-muscle ratios than [<sup>68</sup>Ga]Ga-T2P at 90 min postinjection (4.31 ± 0.10 vs 3.80 ± 0.17, <i>p < 0.05</i>) in Huh7 tumor models. To conclude, radiolabeled T2P exhibited a higher uptake and longer retention in Huh7 tumors than its monomeric counterparts. PET imaging via gallium-68 and fluorine-18 labeled T2P showed a similar imaging quality with comparable signal-to-background ratios. Our results demonstrate that T2P is a promising tool for future clinical diagnosis of HCC.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"209-220"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00838","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Positron emission tomography (PET) is a promising modality for early diagnosis, accurate detection, and staging of hepatocellular carcinoma (HCC). Hereby, a dual-specific probe targeting Glypican-3 (GPC3) and prostate-specific membrane antigen (PSMA) was evaluated for HCC PET imaging. The probe was prepared by conjugating TJ12P2, a GPC3-targeting peptide previously reported by our group, to a highly potent PSMA inhibitor via a polyethylene glycol linker and further tethered to the 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator. The resultant probe, NOTA-TJ12P2-PSMA, abbreviated as T2P, was labeled with gallium-68 and fluorine-18, respectively, and evaluated in murine HCC models of various levels of GPC3 and PSMA expression. Targeting specificity was confirmed by blocking studies. The synthesized [68Ga]Ga-T2P and [18F]AlF-T2P were stable in saline and fetal bovine serum for over 2 h, and bound to their respective targets with high affinity and specificity in cell assays. PET imaging at 60 min postinjection (p.i.) showed that [68Ga]Ga-T2P exhibited higher uptake (1.75 ± 0.16%ID/g) in Huh7 models with high expression of GPC3 and PSMA than gallium-68 labeled TJ12P2 (1.25 ± 0.07%ID/g, p < 0.01) or gallium-68 labeled PSMA-617 (1.07 ± 0.06%ID/g, p < 0.001). The uptake of [68Ga]Ga-T2P in Huh7 tumors was higher than that in PC-3 tumors with low expression of GPC3 or PSMA (0.55 ± 0.24%ID/g, p < 0.01). The uptake of [18F]AlF-T2P or [68Ga]Ga-T2P in the Huh7 tumor was substantially blocked by TJ12P2, TJ12P2 + PSMA, or T2P, but only partially blocked by PSMA. And the PSMA and TJ12P2 monomer blocking effect was less than that of TJ12P2 + PSMA and T2P. [18F]AlF-T2P had higher tumor-to-muscle ratios than [68Ga]Ga-T2P at 90 min postinjection (4.31 ± 0.10 vs 3.80 ± 0.17, p < 0.05) in Huh7 tumor models. To conclude, radiolabeled T2P exhibited a higher uptake and longer retention in Huh7 tumors than its monomeric counterparts. PET imaging via gallium-68 and fluorine-18 labeled T2P showed a similar imaging quality with comparable signal-to-background ratios. Our results demonstrate that T2P is a promising tool for future clinical diagnosis of HCC.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.