Alice P Sowton, Lorenz M W Holzner, Fynn N Krause, Ruby Baxter, Gabriele Mocciaro, Dominika K Krzyzanska, Magdalena Minnion, Katie A O'Brien, Matthew C Harrop, Paula M Darwin, Benjamin D Thackray, Michele Vacca, Martin Feelisch, Julian L Griffin, Andrew J Murray
{"title":"Chronic inorganic nitrate supplementation does not improve metabolic health and worsens disease progression in mice with diet-induced obesity.","authors":"Alice P Sowton, Lorenz M W Holzner, Fynn N Krause, Ruby Baxter, Gabriele Mocciaro, Dominika K Krzyzanska, Magdalena Minnion, Katie A O'Brien, Matthew C Harrop, Paula M Darwin, Benjamin D Thackray, Michele Vacca, Martin Feelisch, Julian L Griffin, Andrew J Murray","doi":"10.1152/ajpendo.00256.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Inorganic nitrate (NO<sub>3</sub><sup>-</sup>) has been proposed to be of therapeutic use as a dietary supplement in obesity and related conditions including the Metabolic Syndrome (MetS), type-II diabetes and metabolic dysfunction associated steatotic liver disease (MASLD). Administration of NO<sub>3</sub><sup>-</sup> to endothelial nitric oxide synthase-deficient mice reversed aspects of MetS, however the impact of NO<sub>3</sub><sup>-</sup> supplementation in diet-induced obesity is not well understood. Here we investigated the whole-body metabolic phenotype and cardiac and hepatic metabolism in mice fed a high-fat high-sucrose (HFHS) diet for up to 12-months of age, supplemented with 1 mM NaNO<sub>3</sub> (or NaCl) in their drinking water. HFHS-feeding was associated with a progressive obesogenic and diabetogenic phenotype, which was not ameliorated by NO<sub>3</sub><sup>-</sup>. Furthermore, HFHS-fed mice supplemented with NO<sub>3</sub><sup>-</sup> showed elevated levels of cardiac fibrosis, and accelerated progression of MASLD including development of hepatocellular carcinoma in comparison with NaCl-supplemented mice. NO<sub>3</sub><sup>-</sup> did not enhance mitochondrial b-oxidation capacity in any tissue assayed and did not suppress hepatic lipid accumulation, suggesting it does not prevent lipotoxicity. We conclude that NO<sub>3</sub><sup>-</sup> is ineffective in preventing the metabolic consequences of an obesogenic diet and may instead be detrimental to metabolic health against the background of HFHS-feeding. This is the first report of an unfavorable effect of long-term nitrate supplementation in the context of the metabolic challenges of overfeeding, warranting urgent further investigation into the mechanism of this interaction.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00256.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic nitrate (NO3-) has been proposed to be of therapeutic use as a dietary supplement in obesity and related conditions including the Metabolic Syndrome (MetS), type-II diabetes and metabolic dysfunction associated steatotic liver disease (MASLD). Administration of NO3- to endothelial nitric oxide synthase-deficient mice reversed aspects of MetS, however the impact of NO3- supplementation in diet-induced obesity is not well understood. Here we investigated the whole-body metabolic phenotype and cardiac and hepatic metabolism in mice fed a high-fat high-sucrose (HFHS) diet for up to 12-months of age, supplemented with 1 mM NaNO3 (or NaCl) in their drinking water. HFHS-feeding was associated with a progressive obesogenic and diabetogenic phenotype, which was not ameliorated by NO3-. Furthermore, HFHS-fed mice supplemented with NO3- showed elevated levels of cardiac fibrosis, and accelerated progression of MASLD including development of hepatocellular carcinoma in comparison with NaCl-supplemented mice. NO3- did not enhance mitochondrial b-oxidation capacity in any tissue assayed and did not suppress hepatic lipid accumulation, suggesting it does not prevent lipotoxicity. We conclude that NO3- is ineffective in preventing the metabolic consequences of an obesogenic diet and may instead be detrimental to metabolic health against the background of HFHS-feeding. This is the first report of an unfavorable effect of long-term nitrate supplementation in the context of the metabolic challenges of overfeeding, warranting urgent further investigation into the mechanism of this interaction.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.