Roy B Dyer, Marcello C Laurenti, Hannah E Christie, Sneha Mohan, Aoife Egan, Chiara Dalla Man, Adrian Vella
{"title":"Enhanced quantification of α-cell suppression by hyperglycemia using a high-sensitivity glucagon assay.","authors":"Roy B Dyer, Marcello C Laurenti, Hannah E Christie, Sneha Mohan, Aoife Egan, Chiara Dalla Man, Adrian Vella","doi":"10.1152/ajpendo.00301.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate measurement of glucagon concentrations in a variety of conditions is necessary for subsequent estimation of glucagon secretion. Glucagon arises in the α-cell as a product of proglucagon processing. Modern 2-site immunoassays have overcome prior problems with glucagon measurement caused by cross-reactivity with other proglucagon-derived fragments. However, in response to hyperglycemia, glucagon concentrations can fall below the limit of quantification of commercial immunoassays. This has implications for the characterization of α-cell function in health, in prediabetes and in type 2 diabetes. An increase in the sensitivity of glucagon measurement was achieved by ethanol precipitation and concentration of sample prior to measurement. Concentrating the sample 6-fold enabled a decrease in the level of quantitation from 1.7 to 0.3 pmol/L with acceptable precision. To establish whether this enhanced high-sensitivity glucagon assay enhances the characterization of α-cell function in health and disease, we then estimated glucagon secretion rate (GSR) in 4 subjects. We subsequently used the relationship of GSR to glucose concentrations to characterize the α-cell response to glucose and demonstrate improved characterization of α-cell dysfunction <i>in vivo</i>.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00301.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate measurement of glucagon concentrations in a variety of conditions is necessary for subsequent estimation of glucagon secretion. Glucagon arises in the α-cell as a product of proglucagon processing. Modern 2-site immunoassays have overcome prior problems with glucagon measurement caused by cross-reactivity with other proglucagon-derived fragments. However, in response to hyperglycemia, glucagon concentrations can fall below the limit of quantification of commercial immunoassays. This has implications for the characterization of α-cell function in health, in prediabetes and in type 2 diabetes. An increase in the sensitivity of glucagon measurement was achieved by ethanol precipitation and concentration of sample prior to measurement. Concentrating the sample 6-fold enabled a decrease in the level of quantitation from 1.7 to 0.3 pmol/L with acceptable precision. To establish whether this enhanced high-sensitivity glucagon assay enhances the characterization of α-cell function in health and disease, we then estimated glucagon secretion rate (GSR) in 4 subjects. We subsequently used the relationship of GSR to glucose concentrations to characterize the α-cell response to glucose and demonstrate improved characterization of α-cell dysfunction in vivo.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.