Nadav Ben David, Guy Nimri, Uri Mendlovic, Yahel Manor, Carlos De la Cruz Mengual, Ido Kaminer
{"title":"On the Connection Between Irrationality Measures and Polynomial Continued Fractions","authors":"Nadav Ben David, Guy Nimri, Uri Mendlovic, Yahel Manor, Carlos De la Cruz Mengual, Ido Kaminer","doi":"10.1007/s40598-024-00250-z","DOIUrl":null,"url":null,"abstract":"<div><p>Linear recursions with integer coefficients, such as the recursion that generates the Fibonacci sequence <span>\\({F}_{n}={F}_{n-1}+{F}_{n-2}\\)</span>, have been intensely studied over millennia and yet still hide interesting undiscovered mathematics. Such a recursion was used by Apéry in his proof of the irrationality of <span>\\(\\zeta \\left(3\\right)\\)</span>, which was later named the Apéry constant. Apéry’s proof used a specific linear recursion that contained integer polynomials (polynomially recursive) and formed a continued fraction; such formulas are called polynomial continued fractions (PCFs). Similar polynomial recursions can be used to prove the irrationality of other fundamental constants such as <span>\\(\\pi\\)</span> and <span>\\(e\\)</span>. More generally, the sequences generated by polynomial recursions form Diophantine approximations, which are ubiquitous in different areas of mathematics such as number theory and combinatorics. However, in general it is not known which polynomial recursions create useful Diophantine approximations and under what conditions they can be used to prove irrationality. Here, we present general conclusions and conjectures about Diophantine approximations created from polynomial recursions. Specifically, we generalize Apéry’s work from his particular choice of PCF to any general PCF, finding the conditions under which a PCF can be used to prove irrationality or to provide an efficient Diophantine approximation. To provide concrete examples, we apply our findings to PCFs found by the Ramanujan Machine algorithms to represent fundamental constants such as <span>\\(\\pi\\)</span>, <span>\\(e\\)</span>, <span>\\(\\zeta \\left(3\\right)\\)</span>, and the Catalan constant. For each such PCF, we demonstrate the extraction of its convergence rate and efficiency, as well as the bound it provides for the irrationality measure of the fundamental constant. We further propose new conjectures about Diophantine approximations based on PCFs. Looking forward, our findings could motivate a search for a wider theory on sequences created by any linear recursions with integer coefficients. Such results can help the development of systematic algorithms for finding Diophantine approximations of fundamental constants. Consequently, our study may contribute to ongoing efforts to answer open questions such as the proof of the irrationality of the Catalan constant or of values of the Riemann zeta function (e.g., <span>\\(\\zeta \\left(5\\right)\\)</span>).</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":"10 4","pages":"529 - 566"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40598-024-00250-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arnold Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40598-024-00250-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Linear recursions with integer coefficients, such as the recursion that generates the Fibonacci sequence \({F}_{n}={F}_{n-1}+{F}_{n-2}\), have been intensely studied over millennia and yet still hide interesting undiscovered mathematics. Such a recursion was used by Apéry in his proof of the irrationality of \(\zeta \left(3\right)\), which was later named the Apéry constant. Apéry’s proof used a specific linear recursion that contained integer polynomials (polynomially recursive) and formed a continued fraction; such formulas are called polynomial continued fractions (PCFs). Similar polynomial recursions can be used to prove the irrationality of other fundamental constants such as \(\pi\) and \(e\). More generally, the sequences generated by polynomial recursions form Diophantine approximations, which are ubiquitous in different areas of mathematics such as number theory and combinatorics. However, in general it is not known which polynomial recursions create useful Diophantine approximations and under what conditions they can be used to prove irrationality. Here, we present general conclusions and conjectures about Diophantine approximations created from polynomial recursions. Specifically, we generalize Apéry’s work from his particular choice of PCF to any general PCF, finding the conditions under which a PCF can be used to prove irrationality or to provide an efficient Diophantine approximation. To provide concrete examples, we apply our findings to PCFs found by the Ramanujan Machine algorithms to represent fundamental constants such as \(\pi\), \(e\), \(\zeta \left(3\right)\), and the Catalan constant. For each such PCF, we demonstrate the extraction of its convergence rate and efficiency, as well as the bound it provides for the irrationality measure of the fundamental constant. We further propose new conjectures about Diophantine approximations based on PCFs. Looking forward, our findings could motivate a search for a wider theory on sequences created by any linear recursions with integer coefficients. Such results can help the development of systematic algorithms for finding Diophantine approximations of fundamental constants. Consequently, our study may contribute to ongoing efforts to answer open questions such as the proof of the irrationality of the Catalan constant or of values of the Riemann zeta function (e.g., \(\zeta \left(5\right)\)).
期刊介绍:
The Arnold Mathematical Journal publishes interesting and understandable results in all areas of mathematics. The name of the journal is not only a dedication to the memory of Vladimir Arnold (1937 – 2010), one of the most influential mathematicians of the 20th century, but also a declaration that the journal should serve to maintain and promote the scientific style characteristic for Arnold''s best mathematical works. Features of AMJ publications include: Popularity. The journal articles should be accessible to a very wide community of mathematicians. Not only formal definitions necessary for the understanding must be provided but also informal motivations even if the latter are well-known to the experts in the field. Interdisciplinary and multidisciplinary mathematics. AMJ publishes research expositions that connect different mathematical subjects. Connections that are useful in both ways are of particular importance. Multidisciplinary research (even if the disciplines all belong to pure mathematics) is generally hard to evaluate, for this reason, this kind of research is often under-represented in specialized mathematical journals. AMJ will try to compensate for this.Problems, objectives, work in progress. Most scholarly publications present results of a research project in their “final'' form, in which all posed questions are answered. Some open questions and conjectures may be even mentioned, but the very process of mathematical discovery remains hidden. Following Arnold, publications in AMJ will try to unhide this process and made it public by encouraging the authors to include informal discussion of their motivation, possibly unsuccessful lines of attack, experimental data and close by research directions. AMJ publishes well-motivated research problems on a regular basis. Problems do not need to be original; an old problem with a new and exciting motivation is worth re-stating. Following Arnold''s principle, a general formulation is less desirable than the simplest partial case that is still unknown.Being interesting. The most important requirement is that the article be interesting. It does not have to be limited by original research contributions of the author; however, the author''s responsibility is to carefully acknowledge the authorship of all results. Neither does the article need to consist entirely of formal and rigorous arguments. It can contain parts, in which an informal author''s understanding of the overall picture is presented; however, these parts must be clearly indicated.