Global and local information-aware relational graph convolutional network for temporal knowledge graph completion

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shuo Wang, Shuxu Chen, Zhaoqian Zhong
{"title":"Global and local information-aware relational graph convolutional network for temporal knowledge graph completion","authors":"Shuo Wang,&nbsp;Shuxu Chen,&nbsp;Zhaoqian Zhong","doi":"10.1007/s10489-024-05987-w","DOIUrl":null,"url":null,"abstract":"<div><p>Temporal knowledge graph completion (TKGC) focuses on inferring missing facts from temporal knowledge graphs (TKGs) and has been widely studied. While previous models based on graph neural networks (GNNs) have shown noteworthy outcomes, they tend to focus on designing complex modules to learn contextual representations. These complex solutions require a large number of parameters and heavy memory consumption. Additionally, existing TKGC approaches focus on exploiting static feature representation for entities and relationships, which fail to effectively capture the semantic information of contexts. In this paper, we propose a global and local information-aware relational graph convolutional neural network (GLARGCN) model to address these issues. First, we design a sampler, which captures significant neighbors by combining global historical event frequencies with local temporal relative displacements and requires no additional learnable parameters. We then employ a time-aware encoder to model timestamps, relations, and entities uniformly. We perform a graph convolution operation to learn a global graph representation. Finally, our method predicts missing entities using a scoring function. We evaluate the model on four benchmark datasets and one specific dataset with unseen timestamps. The experimental results demonstrate that our proposed GLARGCN model not only outperforms contemporary models but also shows robust performance in scenarios with unseen timestamps.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05987-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal knowledge graph completion (TKGC) focuses on inferring missing facts from temporal knowledge graphs (TKGs) and has been widely studied. While previous models based on graph neural networks (GNNs) have shown noteworthy outcomes, they tend to focus on designing complex modules to learn contextual representations. These complex solutions require a large number of parameters and heavy memory consumption. Additionally, existing TKGC approaches focus on exploiting static feature representation for entities and relationships, which fail to effectively capture the semantic information of contexts. In this paper, we propose a global and local information-aware relational graph convolutional neural network (GLARGCN) model to address these issues. First, we design a sampler, which captures significant neighbors by combining global historical event frequencies with local temporal relative displacements and requires no additional learnable parameters. We then employ a time-aware encoder to model timestamps, relations, and entities uniformly. We perform a graph convolution operation to learn a global graph representation. Finally, our method predicts missing entities using a scoring function. We evaluate the model on four benchmark datasets and one specific dataset with unseen timestamps. The experimental results demonstrate that our proposed GLARGCN model not only outperforms contemporary models but also shows robust performance in scenarios with unseen timestamps.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信