Study of contaminated snow cover using remote sensing in the Eastern Himalayas of Arunachal Pradesh, India

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Manmit Kumar Singh, Ritu Anilkumar, Rishikesh Bharti
{"title":"Study of contaminated snow cover using remote sensing in the Eastern Himalayas of Arunachal Pradesh, India","authors":"Manmit Kumar Singh,&nbsp;Ritu Anilkumar,&nbsp;Rishikesh Bharti","doi":"10.1007/s10661-024-13476-3","DOIUrl":null,"url":null,"abstract":"<div><p>Snow is considered contaminated when any foreign materials are deposited/mixed with it, which can accelerate melting and significantly impact the snow cover's radiative balance. Such an enhanced melting rate results in a reduction in freshwater sources at the catchment level. In optical remote sensing, snow contamination is widely studied using a normalizing difference index called the snow contamination index. This is based on the finding that the impact of snow contamination diminishes with wavelength and is most noticeable in the visible spectrum (0.3—0.7 μm). However, the study of snow contamination using optical remote sensing is hindered in the Himalayan terrain due to enduring cloud cover in the region. Synthetic Aperture Radar (SAR) data such as Sentinel-1 can be used to ensure all-weather monitoring of such areas. This study focuses on the SAR backscattering behavior at the C-band of clear and contaminated snow for March 2022 in a part of the Eastern Himalayas of Arunachal Pradesh, India. An attempt has been made to utilize Landsat-9 and Sentinel-1 to study the snow contamination. The SAR backscattering for snow conditions (clear/contaminated) is studied using thresholds obtained from the Landsat-9 snow cover map. The SCI and SAR backscattering statistical analysis shows a negative correlation (R<sup>2</sup> &gt; 0.6) at a 95% confidence level. It is observed that in the microwave region of the C-band, contaminated snow has a comparatively higher backscattering value than clear snow. However, in the visible wavelength, the contaminated snow has a lower reflectance value than clean snow. Such behavior of the snowpack in the microwave region of the C-band is explained using the physical properties of the snowpack and the dominant scattering mechanism over the surface. The key findings of this study suggest that SAR backscattering is affected by snow contamination due to changes in the local incidence angle, snow wetness, and surface roughness. This research provides critical insight into snow contamination using microwave remote sensing, which can be the first step toward developing an index for radar observations.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13476-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Snow is considered contaminated when any foreign materials are deposited/mixed with it, which can accelerate melting and significantly impact the snow cover's radiative balance. Such an enhanced melting rate results in a reduction in freshwater sources at the catchment level. In optical remote sensing, snow contamination is widely studied using a normalizing difference index called the snow contamination index. This is based on the finding that the impact of snow contamination diminishes with wavelength and is most noticeable in the visible spectrum (0.3—0.7 μm). However, the study of snow contamination using optical remote sensing is hindered in the Himalayan terrain due to enduring cloud cover in the region. Synthetic Aperture Radar (SAR) data such as Sentinel-1 can be used to ensure all-weather monitoring of such areas. This study focuses on the SAR backscattering behavior at the C-band of clear and contaminated snow for March 2022 in a part of the Eastern Himalayas of Arunachal Pradesh, India. An attempt has been made to utilize Landsat-9 and Sentinel-1 to study the snow contamination. The SAR backscattering for snow conditions (clear/contaminated) is studied using thresholds obtained from the Landsat-9 snow cover map. The SCI and SAR backscattering statistical analysis shows a negative correlation (R2 > 0.6) at a 95% confidence level. It is observed that in the microwave region of the C-band, contaminated snow has a comparatively higher backscattering value than clear snow. However, in the visible wavelength, the contaminated snow has a lower reflectance value than clean snow. Such behavior of the snowpack in the microwave region of the C-band is explained using the physical properties of the snowpack and the dominant scattering mechanism over the surface. The key findings of this study suggest that SAR backscattering is affected by snow contamination due to changes in the local incidence angle, snow wetness, and surface roughness. This research provides critical insight into snow contamination using microwave remote sensing, which can be the first step toward developing an index for radar observations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信