Formation of intermetallics during the metallization of model nuclear fuel based on uranium dioxide containing oxides of rare earth metals and palladium

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY
A. V. Shishkin, V. Yu. Shishkin, P. N. Mushnikov, Yu. P. Zaikov
{"title":"Formation of intermetallics during the metallization of model nuclear fuel based on uranium dioxide containing oxides of rare earth metals and palladium","authors":"A. V. Shishkin,&nbsp;V. Yu. Shishkin,&nbsp;P. N. Mushnikov,&nbsp;Yu. P. Zaikov","doi":"10.1007/s10512-024-01151-2","DOIUrl":null,"url":null,"abstract":"<div><p>The paper considers the reduction of rare earth metal (REM) oxides and uranium dioxide with lithium produced during the electrolysis of LiCl–Li<sub>2</sub>O melt with the formation of intermetallics and palladium. At a cathode potential of 0.6–0.8 V relative to <span>\\(E_{{\\mathrm{Li}^{+}}/{\\mathrm{Li}^{0}}}\\)</span>, intermetallic compounds of CePd<sub>3</sub>, NdPd<sub>3</sub>, and UPd<sub>4</sub> compositions are formed. The formation current for REM intermetallic compounds is significantly greater than that for uranium. Therefore, when they are co-present in samples, REM intermetallics are formed first, followed by intermetallic compounds of uranium in the presence of palladium unbound by REM alloys. This is due to the significantly greater solubility of neodymium and cerium oxides in the salt melt compared to uranium dioxide. At a cathode potential close to or equal to the potential of liquid lithium, intermetallics with palladium, lanthanides, and uranium Ln<sub>3</sub>Pd<sub>4</sub>, LnPd, UPd<sub>3</sub> are formed. In this case, an important role is played by the ability of lithium and palladium to form alloys that are liquid at 650 °C.</p></div>","PeriodicalId":480,"journal":{"name":"Atomic Energy","volume":"136 3-4","pages":"194 - 199"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10512-024-01151-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the reduction of rare earth metal (REM) oxides and uranium dioxide with lithium produced during the electrolysis of LiCl–Li2O melt with the formation of intermetallics and palladium. At a cathode potential of 0.6–0.8 V relative to \(E_{{\mathrm{Li}^{+}}/{\mathrm{Li}^{0}}}\), intermetallic compounds of CePd3, NdPd3, and UPd4 compositions are formed. The formation current for REM intermetallic compounds is significantly greater than that for uranium. Therefore, when they are co-present in samples, REM intermetallics are formed first, followed by intermetallic compounds of uranium in the presence of palladium unbound by REM alloys. This is due to the significantly greater solubility of neodymium and cerium oxides in the salt melt compared to uranium dioxide. At a cathode potential close to or equal to the potential of liquid lithium, intermetallics with palladium, lanthanides, and uranium Ln3Pd4, LnPd, UPd3 are formed. In this case, an important role is played by the ability of lithium and palladium to form alloys that are liquid at 650 °C.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atomic Energy
Atomic Energy 工程技术-核科学技术
CiteScore
1.00
自引率
20.00%
发文量
100
审稿时长
4-8 weeks
期刊介绍: Atomic Energy publishes papers and review articles dealing with the latest developments in the peaceful uses of atomic energy. Topics include nuclear chemistry and physics, plasma physics, accelerator characteristics, reactor economics and engineering, applications of isotopes, and radiation monitoring and safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信