{"title":"Advanced Glycation End Products in Neurodegenerative Diseases","authors":"Cibin T. Raghavan","doi":"10.1007/s12031-024-02297-1","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced glycation end products (AGEs) have attracted interest as therapeutic targets for neurodegenerative diseases. AGEs facilitate the onset and progression of various neurogenerative disorders due to their ability to promote cross-linking and aggregation of proteins. Further, the interaction between AGEs and receptor for AGEs (RAGE) activates neuroinflammatory, oxidative stress and excitotoxicity processes that contribute to neuronal cell death. Various therapeutic efforts have targeted lowering the production of AGEs, inhibiting RAGE or inhibiting some of the processes of the AGE-RAGE axis as potential treatments for these disorders. Whereas effective treatments for many neurodegenerative disorders remain elusive, such efforts offer promise to slow the progression of diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD).</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02297-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced glycation end products (AGEs) have attracted interest as therapeutic targets for neurodegenerative diseases. AGEs facilitate the onset and progression of various neurogenerative disorders due to their ability to promote cross-linking and aggregation of proteins. Further, the interaction between AGEs and receptor for AGEs (RAGE) activates neuroinflammatory, oxidative stress and excitotoxicity processes that contribute to neuronal cell death. Various therapeutic efforts have targeted lowering the production of AGEs, inhibiting RAGE or inhibiting some of the processes of the AGE-RAGE axis as potential treatments for these disorders. Whereas effective treatments for many neurodegenerative disorders remain elusive, such efforts offer promise to slow the progression of diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD).
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.