Echo lite voice fusion network: advancing underwater acoustic voiceprint recognition with lightweight neural architectures

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiaqi Wu, Donghai Guan, Weiwei Yuan
{"title":"Echo lite voice fusion network: advancing underwater acoustic voiceprint recognition with lightweight neural architectures","authors":"Jiaqi Wu,&nbsp;Donghai Guan,&nbsp;Weiwei Yuan","doi":"10.1007/s10489-024-06035-3","DOIUrl":null,"url":null,"abstract":"<div><p>Underwater acoustic voiceprint recognition, serving as a key technology in the field of biometric identification, presents a wide range of application prospects, especially in areas such as marine resource development, underwater communication, and underwater safety monitoring. Conventional acoustic voiceprint recognition methods exhibit limitations in underwater environments, prompting the need for a lightweight neural network approach to optimally address underwater acoustic voiceprint recognition tasks. This paper introduces a novel lightweight voicing recognition model, the Echo Lite Voice Fusion Network (ELVFN), which incorporates depthwise separable convolution and self-attention mechanism, and significantly improves voicing recognition performance by optimizing acoustic feature extraction technology and hierarchical feature fusion strategy. Concurrently, the computational complexity and parameter quantity of the model are substantially reduced. Comparative analyses with existing acoustic voiceprint recognition models corroborate the superior performance of our model across multiple underwater acoustic datasets. Experimental results demonstrate that ELVFN outperforms in various evaluation metrics, notably in terms of processing efficiency and recognition accuracy. Finally, we discuss the application potential and future development directions of the model, providing an efficient solution for underwater acoustic voiceprint recognition in resource-constrained environments.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06035-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater acoustic voiceprint recognition, serving as a key technology in the field of biometric identification, presents a wide range of application prospects, especially in areas such as marine resource development, underwater communication, and underwater safety monitoring. Conventional acoustic voiceprint recognition methods exhibit limitations in underwater environments, prompting the need for a lightweight neural network approach to optimally address underwater acoustic voiceprint recognition tasks. This paper introduces a novel lightweight voicing recognition model, the Echo Lite Voice Fusion Network (ELVFN), which incorporates depthwise separable convolution and self-attention mechanism, and significantly improves voicing recognition performance by optimizing acoustic feature extraction technology and hierarchical feature fusion strategy. Concurrently, the computational complexity and parameter quantity of the model are substantially reduced. Comparative analyses with existing acoustic voiceprint recognition models corroborate the superior performance of our model across multiple underwater acoustic datasets. Experimental results demonstrate that ELVFN outperforms in various evaluation metrics, notably in terms of processing efficiency and recognition accuracy. Finally, we discuss the application potential and future development directions of the model, providing an efficient solution for underwater acoustic voiceprint recognition in resource-constrained environments.

Abstract Image

回声生活语音融合网络:推进水声声纹识别与轻量级的神经架构
水声声纹识别作为生物特征识别领域的一项关键技术,在海洋资源开发、水下通信、水下安全监测等领域具有广泛的应用前景。传统的声纹识别方法在水下环境中表现出局限性,因此需要一种轻量级的神经网络方法来最佳地解决水下声纹识别任务。本文提出了一种新的轻量级语音识别模型Echo Lite语音融合网络(ELVFN),该模型融合了深度可分卷积和自注意机制,通过优化声学特征提取技术和分层特征融合策略,显著提高了语音识别性能。同时,大大降低了模型的计算复杂度和参数数量。与现有声纹识别模型的对比分析证实了我们的模型在多个水声数据集上的优越性能。实验结果表明,ELVFN在处理效率和识别精度方面均优于其他评价指标。最后,讨论了该模型的应用潜力和未来发展方向,为资源受限环境下的水声声纹识别提供了一种有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信