Ni–MoO2 heterostructure encapsulated in mesoporous silica microtubes: a structured hydrogenation catalyst with enhanced activity for reduction of 4-nitrophenol

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2024-11-14 DOI:10.1039/D4CE01044B
Yiran Sun, Mintong Guo, Suping Han, Jingli Xu, Xue-Bo Yin and Min Zhang
{"title":"Ni–MoO2 heterostructure encapsulated in mesoporous silica microtubes: a structured hydrogenation catalyst with enhanced activity for reduction of 4-nitrophenol","authors":"Yiran Sun, Mintong Guo, Suping Han, Jingli Xu, Xue-Bo Yin and Min Zhang","doi":"10.1039/D4CE01044B","DOIUrl":null,"url":null,"abstract":"<p >Metallic Ni catalysts often suffer from serious aggregation and poor stability during the process of catalysis. In this work, core–shell nanostructures with nanosized MoO<small><sub>2</sub></small>–Ni nanoparticles (NPs) and mesoporous SiO<small><sub>2</sub></small>(mSiO<small><sub>2</sub></small>) shells were well designed to address these issues. The Ni–MoO<small><sub>2</sub></small> hybrid cores were converted from hierarchical NiMoO<small><sub>4</sub></small> microtubes inside the SiO<small><sub>2</sub></small> shell through carbonization treatment to remove the hexadecyl trimethyl ammonium bromide (CTAB) template under the protection of a nitrogen atmosphere. The mesoporous SiO<small><sub>2</sub></small> shells in Ni–MoO<small><sub>2</sub></small>@mSiO<small><sub>2</sub></small> nanoreactors prevented the agglomeration/sintering of Ni NPs, while allowing the mass diffusion of small molecules. Owing to the high catalytic performance of Ni–MoO<small><sub>2</sub></small> cores, good protection of mesoporous silica, and the unique sandwich-like structure, the obtained Ni–MoO<small><sub>2</sub></small>@mSiO<small><sub>2</sub></small> nanoreactors showed tremendous improvement in catalytic activity and stability.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 48","pages":" 6813-6822"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce01044b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic Ni catalysts often suffer from serious aggregation and poor stability during the process of catalysis. In this work, core–shell nanostructures with nanosized MoO2–Ni nanoparticles (NPs) and mesoporous SiO2(mSiO2) shells were well designed to address these issues. The Ni–MoO2 hybrid cores were converted from hierarchical NiMoO4 microtubes inside the SiO2 shell through carbonization treatment to remove the hexadecyl trimethyl ammonium bromide (CTAB) template under the protection of a nitrogen atmosphere. The mesoporous SiO2 shells in Ni–MoO2@mSiO2 nanoreactors prevented the agglomeration/sintering of Ni NPs, while allowing the mass diffusion of small molecules. Owing to the high catalytic performance of Ni–MoO2 cores, good protection of mesoporous silica, and the unique sandwich-like structure, the obtained Ni–MoO2@mSiO2 nanoreactors showed tremendous improvement in catalytic activity and stability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信