Identification of Ni3Fe alloy as a candidate catalyst for quinoline selective hydrogenation with computations†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Zhaochun He, Yonghua Liu and Tao Wang
{"title":"Identification of Ni3Fe alloy as a candidate catalyst for quinoline selective hydrogenation with computations†","authors":"Zhaochun He, Yonghua Liu and Tao Wang","doi":"10.1039/D4CY01076K","DOIUrl":null,"url":null,"abstract":"<p >The 1,2,3,4-tetrahydroquinoline (py-THQL) is a crucial intermediate and fragment in chemical synthesis, but its production from quinoline (QL) selective hydrogenation in heterogeneous catalysis mainly relies on noble-metal-based catalysts. Therefore, the design of catalysts composed of earth-abundant elements for this reaction is meaningful. In this work, using density functional theory (DFT) calculations, we found the binding energy of QL to be a suitable descriptor to illustrate the general activity trend of metallic catalysts for QL hydrogenation. Among the screened bimetallic alloys composed of Fe, Co, Ni, and Cu, we computationally identified Ni<small><sub>3</sub></small>Fe as a promising candidate catalyst with high stability, while our systematic mechanistic calculations showed the low energy barriers for each hydrogenation step. Our established DFT-based mean-field microkinetic model indicates a much higher turnover frequency for py-THQL production on the Ni<small><sub>3</sub></small>Fe(111) surface than on the experimentally reported high-performance AuPd<small><sub>3</sub></small>(111) surface. This work not only identified a valuable descriptor for the rational catalyst screening for the complex QL hydrogenation reaction but also theoretically predicted a cost-effective Ni<small><sub>3</sub></small>Fe catalyst for the hydrogenation reaction.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 24","pages":" 7134-7139"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy01076k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The 1,2,3,4-tetrahydroquinoline (py-THQL) is a crucial intermediate and fragment in chemical synthesis, but its production from quinoline (QL) selective hydrogenation in heterogeneous catalysis mainly relies on noble-metal-based catalysts. Therefore, the design of catalysts composed of earth-abundant elements for this reaction is meaningful. In this work, using density functional theory (DFT) calculations, we found the binding energy of QL to be a suitable descriptor to illustrate the general activity trend of metallic catalysts for QL hydrogenation. Among the screened bimetallic alloys composed of Fe, Co, Ni, and Cu, we computationally identified Ni3Fe as a promising candidate catalyst with high stability, while our systematic mechanistic calculations showed the low energy barriers for each hydrogenation step. Our established DFT-based mean-field microkinetic model indicates a much higher turnover frequency for py-THQL production on the Ni3Fe(111) surface than on the experimentally reported high-performance AuPd3(111) surface. This work not only identified a valuable descriptor for the rational catalyst screening for the complex QL hydrogenation reaction but also theoretically predicted a cost-effective Ni3Fe catalyst for the hydrogenation reaction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信