Martin Gerbaulet, Anja Hemschemeier and Thomas Happe
{"title":"The O2-stable [FeFe]-hydrogenase CbA5H reveals high resilience against organic solvents†","authors":"Martin Gerbaulet, Anja Hemschemeier and Thomas Happe","doi":"10.1039/D4CY01018C","DOIUrl":null,"url":null,"abstract":"<p >[FeFe]-Hydrogenases are highly efficient hydrogen-(H<small><sub>2</sub></small>) converting enzymes which play pivotal roles for H<small><sub>2</sub></small> cycling in natural habitats, but which are also of interest for sustainable approaches to generate or employ H<small><sub>2</sub></small> gas. [FeFe]-Hydrogenases harbor a unique active site metal cofactor, the H-cluster, whose di-iron site by itself is nearly inactive but, as part of the protein, allows high turnover rates. Understanding this essential interplay of protein and co-factor might help to install [FeFe]-hydrogenases in biotechnological applications. The catalytic unit of the H-Cluster can be synthesized chemically and incorporated into [FeFe]-hydrogenase precursors, which allows to introduce non-natural metals or ligands and study their impact on catalytic activity. However, these compounds are often not water-soluble and have to be added to the proteins in solvents known to destabilize polypeptides. The resilience of [FeFe]-hydrogenases against organic solvents has hardly been investigated. To address this knowledge gap, we characterized the stability of the [FeFe]-hydrogenase CbA5H from <em>Clostridium beijerinckii</em> in several organic solvents (dimethylsulfoxide (DMSO), acetone, acetonitrile as well as water-miscible short-chain alcohols). These solvents are required to dissolve co-factor analogues and are also employed in chemical syntheses that might be combined with biocatalysts such as hydrogenases for more sustainable industrial processes. In the medium time-frame, CbA5H is remarkably stable in high concentrations of acetone and acetonitrile and also withstands intermediate concentrations of DMSO, ethanol and methanol. Combined with the unusual O<small><sub>2</sub></small> stability and high temperature and pressure tolerance, this makes CbA5H a candidate for its use in non-aqueous reaction environments.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 24","pages":" 7093-7106"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy01018c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy01018c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
[FeFe]-Hydrogenases are highly efficient hydrogen-(H2) converting enzymes which play pivotal roles for H2 cycling in natural habitats, but which are also of interest for sustainable approaches to generate or employ H2 gas. [FeFe]-Hydrogenases harbor a unique active site metal cofactor, the H-cluster, whose di-iron site by itself is nearly inactive but, as part of the protein, allows high turnover rates. Understanding this essential interplay of protein and co-factor might help to install [FeFe]-hydrogenases in biotechnological applications. The catalytic unit of the H-Cluster can be synthesized chemically and incorporated into [FeFe]-hydrogenase precursors, which allows to introduce non-natural metals or ligands and study their impact on catalytic activity. However, these compounds are often not water-soluble and have to be added to the proteins in solvents known to destabilize polypeptides. The resilience of [FeFe]-hydrogenases against organic solvents has hardly been investigated. To address this knowledge gap, we characterized the stability of the [FeFe]-hydrogenase CbA5H from Clostridium beijerinckii in several organic solvents (dimethylsulfoxide (DMSO), acetone, acetonitrile as well as water-miscible short-chain alcohols). These solvents are required to dissolve co-factor analogues and are also employed in chemical syntheses that might be combined with biocatalysts such as hydrogenases for more sustainable industrial processes. In the medium time-frame, CbA5H is remarkably stable in high concentrations of acetone and acetonitrile and also withstands intermediate concentrations of DMSO, ethanol and methanol. Combined with the unusual O2 stability and high temperature and pressure tolerance, this makes CbA5H a candidate for its use in non-aqueous reaction environments.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days