One-pot synthesis of 1,4-butanediol via the deep hydrogenation of maleic anhydride over Cu–xMo/SiO2 catalysts†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Kai Cui, Jiaming Yang, Yuli Jing, Junwen Chen, Chen Zhao, Peng Wu and Xiaohong Li
{"title":"One-pot synthesis of 1,4-butanediol via the deep hydrogenation of maleic anhydride over Cu–xMo/SiO2 catalysts†","authors":"Kai Cui, Jiaming Yang, Yuli Jing, Junwen Chen, Chen Zhao, Peng Wu and Xiaohong Li","doi":"10.1039/D4CY01006J","DOIUrl":null,"url":null,"abstract":"<p >Sustainability issues have led to a gradual market expansion for the 1,4-butanediol (BDO) monomer of the biodegradable plastics to replace conventional plastics. Maleic anhydride (MA) can be derived from the oxidation of bio-based furfural or fructose. Although the hydrogenation of MA can produce a series of products, including succinic anhydride (SA), γ-butyrolactone (GBL), BDO and tetrahydrofuran (THF), the one-pot deep hydrogenation of MA to BDO or THF under mild conditions has been rarely reported in the literature until now. Herein, we report the production of BDO from the one-pot deep hydrogenation of MA over a Cu–0.03Mo/SiO<small><sub>2</sub></small> catalyst, achieving 100% MA conversion and 88.3% BDO yield. The Cu–0.03Mo/SiO<small><sub>2</sub></small> catalyst also showed good long-term stability without obvious loss in activity or BDO selectivity during a 160 h time-on-stream test. Doping Mo to Cu/SiO<small><sub>2</sub></small> catalysts in an optimal amount adjusted the distribution of Cu<small><sup>0</sup></small>/Cu<small><sup>+</sup></small> species and modulated the interaction of Cu–SiO<small><sub>2</sub></small> and surface acidity, so that the activation of hydrogen, MA and relevant intermediates can become balanced, in addition to the restriction of side-reactions. This study provides potential for the green synthesis of BDO with non-precious Cu-based catalysts.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 24","pages":" 7081-7092"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy01006j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainability issues have led to a gradual market expansion for the 1,4-butanediol (BDO) monomer of the biodegradable plastics to replace conventional plastics. Maleic anhydride (MA) can be derived from the oxidation of bio-based furfural or fructose. Although the hydrogenation of MA can produce a series of products, including succinic anhydride (SA), γ-butyrolactone (GBL), BDO and tetrahydrofuran (THF), the one-pot deep hydrogenation of MA to BDO or THF under mild conditions has been rarely reported in the literature until now. Herein, we report the production of BDO from the one-pot deep hydrogenation of MA over a Cu–0.03Mo/SiO2 catalyst, achieving 100% MA conversion and 88.3% BDO yield. The Cu–0.03Mo/SiO2 catalyst also showed good long-term stability without obvious loss in activity or BDO selectivity during a 160 h time-on-stream test. Doping Mo to Cu/SiO2 catalysts in an optimal amount adjusted the distribution of Cu0/Cu+ species and modulated the interaction of Cu–SiO2 and surface acidity, so that the activation of hydrogen, MA and relevant intermediates can become balanced, in addition to the restriction of side-reactions. This study provides potential for the green synthesis of BDO with non-precious Cu-based catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信