Kai Cui, Jiaming Yang, Yuli Jing, Junwen Chen, Chen Zhao, Peng Wu and Xiaohong Li
{"title":"One-pot synthesis of 1,4-butanediol via the deep hydrogenation of maleic anhydride over Cu–xMo/SiO2 catalysts†","authors":"Kai Cui, Jiaming Yang, Yuli Jing, Junwen Chen, Chen Zhao, Peng Wu and Xiaohong Li","doi":"10.1039/D4CY01006J","DOIUrl":null,"url":null,"abstract":"<p >Sustainability issues have led to a gradual market expansion for the 1,4-butanediol (BDO) monomer of the biodegradable plastics to replace conventional plastics. Maleic anhydride (MA) can be derived from the oxidation of bio-based furfural or fructose. Although the hydrogenation of MA can produce a series of products, including succinic anhydride (SA), γ-butyrolactone (GBL), BDO and tetrahydrofuran (THF), the one-pot deep hydrogenation of MA to BDO or THF under mild conditions has been rarely reported in the literature until now. Herein, we report the production of BDO from the one-pot deep hydrogenation of MA over a Cu–0.03Mo/SiO<small><sub>2</sub></small> catalyst, achieving 100% MA conversion and 88.3% BDO yield. The Cu–0.03Mo/SiO<small><sub>2</sub></small> catalyst also showed good long-term stability without obvious loss in activity or BDO selectivity during a 160 h time-on-stream test. Doping Mo to Cu/SiO<small><sub>2</sub></small> catalysts in an optimal amount adjusted the distribution of Cu<small><sup>0</sup></small>/Cu<small><sup>+</sup></small> species and modulated the interaction of Cu–SiO<small><sub>2</sub></small> and surface acidity, so that the activation of hydrogen, MA and relevant intermediates can become balanced, in addition to the restriction of side-reactions. This study provides potential for the green synthesis of BDO with non-precious Cu-based catalysts.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 24","pages":" 7081-7092"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy01006j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainability issues have led to a gradual market expansion for the 1,4-butanediol (BDO) monomer of the biodegradable plastics to replace conventional plastics. Maleic anhydride (MA) can be derived from the oxidation of bio-based furfural or fructose. Although the hydrogenation of MA can produce a series of products, including succinic anhydride (SA), γ-butyrolactone (GBL), BDO and tetrahydrofuran (THF), the one-pot deep hydrogenation of MA to BDO or THF under mild conditions has been rarely reported in the literature until now. Herein, we report the production of BDO from the one-pot deep hydrogenation of MA over a Cu–0.03Mo/SiO2 catalyst, achieving 100% MA conversion and 88.3% BDO yield. The Cu–0.03Mo/SiO2 catalyst also showed good long-term stability without obvious loss in activity or BDO selectivity during a 160 h time-on-stream test. Doping Mo to Cu/SiO2 catalysts in an optimal amount adjusted the distribution of Cu0/Cu+ species and modulated the interaction of Cu–SiO2 and surface acidity, so that the activation of hydrogen, MA and relevant intermediates can become balanced, in addition to the restriction of side-reactions. This study provides potential for the green synthesis of BDO with non-precious Cu-based catalysts.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days