CausalFormer: An Interpretable Transformer for Temporal Causal Discovery

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lingbai Kong;Wengen Li;Hanchen Yang;Yichao Zhang;Jihong Guan;Shuigeng Zhou
{"title":"CausalFormer: An Interpretable Transformer for Temporal Causal Discovery","authors":"Lingbai Kong;Wengen Li;Hanchen Yang;Yichao Zhang;Jihong Guan;Shuigeng Zhou","doi":"10.1109/TKDE.2024.3484461","DOIUrl":null,"url":null,"abstract":"Temporal causal discovery is a crucial task aimed at uncovering the causal relations within time series data. The latest temporal causal discovery methods usually train deep learning models on prediction tasks to uncover the causality between time series. They capture causal relations by analyzing the parameters of some components of the trained models, e.g., attention weights and convolution weights. However, this is an incomplete mapping process from the model parameters to the causality and fails to investigate the other components, e.g., fully connected layers and activation functions, that are also significant for causal discovery. To facilitate the utilization of the whole deep learning models in temporal causal discovery, we proposed an interpretable transformer-based causal discovery model termed CausalFormer, which consists of the causality-aware transformer and the decomposition-based causality detector. The causality-aware transformer learns the causal representation of time series data using a prediction task with the designed multi-kernel causal convolution which aggregates each input time series along the temporal dimension under the temporal priority constraint. Then, the decomposition-based causality detector interprets the global structure of the trained causality-aware transformer with the proposed regression relevance propagation to identify potential causal relations and finally construct the causal graph. Experiments on synthetic, simulated, and real datasets demonstrate the state-of-the-art performance of CausalFormer on discovering temporal causality.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"102-115"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10726725/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal causal discovery is a crucial task aimed at uncovering the causal relations within time series data. The latest temporal causal discovery methods usually train deep learning models on prediction tasks to uncover the causality between time series. They capture causal relations by analyzing the parameters of some components of the trained models, e.g., attention weights and convolution weights. However, this is an incomplete mapping process from the model parameters to the causality and fails to investigate the other components, e.g., fully connected layers and activation functions, that are also significant for causal discovery. To facilitate the utilization of the whole deep learning models in temporal causal discovery, we proposed an interpretable transformer-based causal discovery model termed CausalFormer, which consists of the causality-aware transformer and the decomposition-based causality detector. The causality-aware transformer learns the causal representation of time series data using a prediction task with the designed multi-kernel causal convolution which aggregates each input time series along the temporal dimension under the temporal priority constraint. Then, the decomposition-based causality detector interprets the global structure of the trained causality-aware transformer with the proposed regression relevance propagation to identify potential causal relations and finally construct the causal graph. Experiments on synthetic, simulated, and real datasets demonstrate the state-of-the-art performance of CausalFormer on discovering temporal causality.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信