Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zihan Gao;Peixiao Zheng;Wanming Hao;Shouyi Yang
{"title":"Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server","authors":"Zihan Gao;Peixiao Zheng;Wanming Hao;Shouyi Yang","doi":"10.1109/TCC.2024.3481039","DOIUrl":null,"url":null,"abstract":"Collaborative cloud computing (CCC) has emerged as a promising paradigm to support computation-intensive and delay-sensitive applications by leveraging MEC and MCC technologies. However, the coupling between multiple variables and subtask dependencies within an application poses significant challenges to the computation offloading mechanism. To address this, we investigate the computation offloading problem for CCC by jointly optimizing offloading decisions, resource allocation, and subtask scheduling across a multi-core edge server. First, we exploit latency to design a subtask dependency model within the application. Next, we formulate a System Energy-Time Cost (\n<inline-formula><tex-math>$SETC$</tex-math></inline-formula>\n) minimization problem that considers the trade-off between time and energy consumption while satisfying subtask dependencies. Due to the complexity of directly solving the formulated problem, we decompose it and propose two offloading algorithms, namely Maximum Local Searching Offloading (MLSO) and Sequential Searching Offloading (SSO), to jointly optimize offloading decisions and resource allocation. We then model dependent subtask scheduling across the multi-core edge server as a Job-Shop Scheduling Problem (JSSP) and propose a Genetic-based Task Scheduling (GTS) algorithm to achieve optimal dependent subtask scheduling on the multi-core edge server. Finally, our simulation results demonstrate the effectiveness of the proposed MLSO, SSO, and GTS algorithms under different parameter settings.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1401-1414"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10716769/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative cloud computing (CCC) has emerged as a promising paradigm to support computation-intensive and delay-sensitive applications by leveraging MEC and MCC technologies. However, the coupling between multiple variables and subtask dependencies within an application poses significant challenges to the computation offloading mechanism. To address this, we investigate the computation offloading problem for CCC by jointly optimizing offloading decisions, resource allocation, and subtask scheduling across a multi-core edge server. First, we exploit latency to design a subtask dependency model within the application. Next, we formulate a System Energy-Time Cost ( $SETC$ ) minimization problem that considers the trade-off between time and energy consumption while satisfying subtask dependencies. Due to the complexity of directly solving the formulated problem, we decompose it and propose two offloading algorithms, namely Maximum Local Searching Offloading (MLSO) and Sequential Searching Offloading (SSO), to jointly optimize offloading decisions and resource allocation. We then model dependent subtask scheduling across the multi-core edge server as a Job-Shop Scheduling Problem (JSSP) and propose a Genetic-based Task Scheduling (GTS) algorithm to achieve optimal dependent subtask scheduling on the multi-core edge server. Finally, our simulation results demonstrate the effectiveness of the proposed MLSO, SSO, and GTS algorithms under different parameter settings.
基于子任务调度的多核协同云计算联合卸载与资源分配
协作云计算(CCC)已经成为一种很有前途的范例,通过利用MEC和MCC技术来支持计算密集型和延迟敏感型应用程序。然而,应用程序中多个变量和子任务依赖关系之间的耦合对计算卸载机制提出了重大挑战。为了解决这个问题,我们通过联合优化跨多核边缘服务器的卸载决策、资源分配和子任务调度来研究CCC的计算卸载问题。首先,我们利用延迟来设计应用程序中的子任务依赖模型。接下来,我们制定了一个系统能量-时间成本(SETC$)最小化问题,该问题考虑了时间和能量消耗之间的权衡,同时满足子任务依赖性。针对直接求解该问题的复杂性,对其进行分解,提出最大局部搜索卸载(MLSO)和顺序搜索卸载(SSO)两种卸载算法,共同优化卸载决策和资源分配。然后将多核边缘服务器上的依赖子任务调度建模为作业车间调度问题(Job-Shop scheduling Problem, JSSP),并提出了一种基于遗传的任务调度(Genetic-based Task scheduling, GTS)算法来实现多核边缘服务器上的最优依赖子任务调度。最后,我们的仿真结果验证了所提出的MLSO、SSO和GTS算法在不同参数设置下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信