{"title":"Condensing Pre-Augmented Recommendation Data via Lightweight Policy Gradient Estimation","authors":"Jiahao Wu;Wenqi Fan;Jingfan Chen;Shengcai Liu;Qijiong Liu;Rui He;Qing Li;Ke Tang","doi":"10.1109/TKDE.2024.3484249","DOIUrl":null,"url":null,"abstract":"Training recommendation models on large datasets requires significant time and resources. It is desired to construct concise yet informative datasets for efficient training. Recent advances in dataset condensation show promise in addressing this problem by synthesizing small datasets. However, applying existing methods of dataset condensation to recommendation has limitations: (1) they fail to generate discrete user-item interactions, and (2) they could not preserve users’ potential preferences. To address the limitations, we propose a lightweight condensation framework tailored for recommendation (\n<bold>DConRec</b>\n), focusing on condensing user-item historical interaction sets. Specifically, we model the discrete user-item interactions via a probabilistic approach and design a pre-augmentation module to incorporate the potential preferences of users into the condensed datasets. While the substantial size of datasets leads to costly optimization, we propose a lightweight policy gradient estimation to accelerate the data synthesis. Experimental results on multiple real-world datasets have demonstrated the effectiveness and efficiency of our framework. Besides, we provide a theoretical analysis of the provable convergence of DConRec.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"162-173"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10726790/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Training recommendation models on large datasets requires significant time and resources. It is desired to construct concise yet informative datasets for efficient training. Recent advances in dataset condensation show promise in addressing this problem by synthesizing small datasets. However, applying existing methods of dataset condensation to recommendation has limitations: (1) they fail to generate discrete user-item interactions, and (2) they could not preserve users’ potential preferences. To address the limitations, we propose a lightweight condensation framework tailored for recommendation (
DConRec
), focusing on condensing user-item historical interaction sets. Specifically, we model the discrete user-item interactions via a probabilistic approach and design a pre-augmentation module to incorporate the potential preferences of users into the condensed datasets. While the substantial size of datasets leads to costly optimization, we propose a lightweight policy gradient estimation to accelerate the data synthesis. Experimental results on multiple real-world datasets have demonstrated the effectiveness and efficiency of our framework. Besides, we provide a theoretical analysis of the provable convergence of DConRec.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.