Minimizing Response Delay in UAV-Assisted Mobile Edge Computing by Joint UAV Deployment and Computation Offloading

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jianshan Zhang;Haibo Luo;Xing Chen;Hong Shen;Longkun Guo
{"title":"Minimizing Response Delay in UAV-Assisted Mobile Edge Computing by Joint UAV Deployment and Computation Offloading","authors":"Jianshan Zhang;Haibo Luo;Xing Chen;Hong Shen;Longkun Guo","doi":"10.1109/TCC.2024.3478172","DOIUrl":null,"url":null,"abstract":"As a promising technique for offloading computation tasks from mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) utilizes UAVs as computational resources. A popular method for enhancing the quality of service (QoS) of UAV-assisted MEC systems is to jointly optimize UAV deployment and computation task offloading. This imposes the challenge of dynamically adjusting UAV deployment and computation offloading to accommodate the changing positions and computational requirements of mobile devices. Due to the real-time requirements of MEC computation tasks, finding an efficient joint optimization approach is imperative. This paper proposes an algorithm aimed at minimizing the average response delay in a UAV-assisted MEC system. The approach revolves around the joint optimization of UAV deployment and computation offloading through convex optimization. We break down the problem into three sub-problems: UAV deployment, Ground Device (GD) access, and computation tasks offloading, which we address using the block coordinate descent algorithm. Observing the \n<inline-formula><tex-math>$NP$</tex-math></inline-formula>\n-hardness nature of the original problem, we present near-optimal solutions to the decomposed sub-problems. Simulation results demonstrate that our approach can generate a joint optimization solution within seconds and diminish the average response delay compared to state-of-the-art algorithms and other advanced algorithms, with improvements ranging from 4.70% to 42.94%.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1372-1386"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713504/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As a promising technique for offloading computation tasks from mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) utilizes UAVs as computational resources. A popular method for enhancing the quality of service (QoS) of UAV-assisted MEC systems is to jointly optimize UAV deployment and computation task offloading. This imposes the challenge of dynamically adjusting UAV deployment and computation offloading to accommodate the changing positions and computational requirements of mobile devices. Due to the real-time requirements of MEC computation tasks, finding an efficient joint optimization approach is imperative. This paper proposes an algorithm aimed at minimizing the average response delay in a UAV-assisted MEC system. The approach revolves around the joint optimization of UAV deployment and computation offloading through convex optimization. We break down the problem into three sub-problems: UAV deployment, Ground Device (GD) access, and computation tasks offloading, which we address using the block coordinate descent algorithm. Observing the $NP$ -hardness nature of the original problem, we present near-optimal solutions to the decomposed sub-problems. Simulation results demonstrate that our approach can generate a joint optimization solution within seconds and diminish the average response delay compared to state-of-the-art algorithms and other advanced algorithms, with improvements ranging from 4.70% to 42.94%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信