From Traces to Packets: Realistic Deep Learning Based Multi-Tab Website Fingerprinting Attacks

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Haoyu Yin;Yingjian Liu;Zhongwen Guo;Yu Wang
{"title":"From Traces to Packets: Realistic Deep Learning Based Multi-Tab Website Fingerprinting Attacks","authors":"Haoyu Yin;Yingjian Liu;Zhongwen Guo;Yu Wang","doi":"10.26599/TST.2024.9010073","DOIUrl":null,"url":null,"abstract":"Recent advancements in deep learning (DL) have introduced new security challenges in the form of side-channel attacks. A prime example is the website fingerprinting attack (WFA), which targets anonymity networks like Tor, enabling attackers to unveil users' protected browsing activities from traffic data. While state-of-the-art WFAs have achieved remarkable results, they often rely on unrealistic single-website assumptions. In this paper, we undertake an exhaustive exploration of multi-tab website fingerprinting attacks (MTWFAs) in more realistic scenarios. We delve into MTWFAs and introduce MTWFA-SEG, a task involving the fine-grained packet-level classification within multi-tab Tor traffic. By employing deep learning models, we reveal their potential to threaten user privacy by discerning visited websites and browsing session timing. We design an improved fully convolutional model for MTWFA-SEG, which are enhanced by both network architecture advances and traffic data instincts. In the evaluations on interlocking browsing datasets, the proposed models achieve remarkable accuracy rates of over 68.6%, 71.8%, and 76.1% in closed, imbalanced open, and balanced open-world settings, respectively. Furthermore, the proposed models exhibit substantial robustness across diverse train-test settings. We further validate our designs in a coarse-grained task, MTWFA-MultiLabel, where they not only achieve state-of-the-art performance but also demonstrate high robustness in challenging situations.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"830-850"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786942","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786942/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in deep learning (DL) have introduced new security challenges in the form of side-channel attacks. A prime example is the website fingerprinting attack (WFA), which targets anonymity networks like Tor, enabling attackers to unveil users' protected browsing activities from traffic data. While state-of-the-art WFAs have achieved remarkable results, they often rely on unrealistic single-website assumptions. In this paper, we undertake an exhaustive exploration of multi-tab website fingerprinting attacks (MTWFAs) in more realistic scenarios. We delve into MTWFAs and introduce MTWFA-SEG, a task involving the fine-grained packet-level classification within multi-tab Tor traffic. By employing deep learning models, we reveal their potential to threaten user privacy by discerning visited websites and browsing session timing. We design an improved fully convolutional model for MTWFA-SEG, which are enhanced by both network architecture advances and traffic data instincts. In the evaluations on interlocking browsing datasets, the proposed models achieve remarkable accuracy rates of over 68.6%, 71.8%, and 76.1% in closed, imbalanced open, and balanced open-world settings, respectively. Furthermore, the proposed models exhibit substantial robustness across diverse train-test settings. We further validate our designs in a coarse-grained task, MTWFA-MultiLabel, where they not only achieve state-of-the-art performance but also demonstrate high robustness in challenging situations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信