A Multi-Hyperparameter Prediction Framework for Distributed Energy Trading on Photovoltaic Network

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Chun Chen;Yong Zhang;Boon Han Lim;Li Ning;Shengzhong Feng;Peng Xie
{"title":"A Multi-Hyperparameter Prediction Framework for Distributed Energy Trading on Photovoltaic Network","authors":"Chun Chen;Yong Zhang;Boon Han Lim;Li Ning;Shengzhong Feng;Peng Xie","doi":"10.26599/TST.2024.9010150","DOIUrl":null,"url":null,"abstract":"The rapid evolution of distributed energy resources, particularly photovoltaic systems, poses a formidable challenge in maintaining a delicate balance between energy supply and demand while minimizing costs. The integrated nature of distributed markets, blending centralized and decentralized elements, holds the promise of maximizing social welfare and significantly reducing overall costs, including computational and communication expenses. However, achieving this balance requires careful consideration of various hyperparameter sets, encompassing factors such as the number of communities, community detection methods, and trading mechanisms employed among nodes. To address this challenge, we introduce a groundbreaking neural network-based framework, the Energy Trading-based Artificial Neural Network (ET-ANN), which excels in performance compared to existing algorithms. Our experiments underscore the superiority of ET-ANN in minimizing total energy transaction costs while maximizing social welfare within the realm of photovoltaic networks.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"864-874"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786948","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786948/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of distributed energy resources, particularly photovoltaic systems, poses a formidable challenge in maintaining a delicate balance between energy supply and demand while minimizing costs. The integrated nature of distributed markets, blending centralized and decentralized elements, holds the promise of maximizing social welfare and significantly reducing overall costs, including computational and communication expenses. However, achieving this balance requires careful consideration of various hyperparameter sets, encompassing factors such as the number of communities, community detection methods, and trading mechanisms employed among nodes. To address this challenge, we introduce a groundbreaking neural network-based framework, the Energy Trading-based Artificial Neural Network (ET-ANN), which excels in performance compared to existing algorithms. Our experiments underscore the superiority of ET-ANN in minimizing total energy transaction costs while maximizing social welfare within the realm of photovoltaic networks.
光伏网络分布式能源交易的多参数预测框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信