Handling Low Homophily in Recommender Systems With Partitioned Graph Transformer

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Thanh Tam Nguyen;Thanh Toan Nguyen;Matthias Weidlich;Jun Jo;Quoc Viet Hung Nguyen;Hongzhi Yin;Alan Wee-Chung Liew
{"title":"Handling Low Homophily in Recommender Systems With Partitioned Graph Transformer","authors":"Thanh Tam Nguyen;Thanh Toan Nguyen;Matthias Weidlich;Jun Jo;Quoc Viet Hung Nguyen;Hongzhi Yin;Alan Wee-Chung Liew","doi":"10.1109/TKDE.2024.3485880","DOIUrl":null,"url":null,"abstract":"Modern recommender systems derive predictions from an interaction graph that links users and items. To this end, many of today's state-of-the-art systems use graph neural networks (GNNs) to learn effective representations of these graphs under the assumption of homophily, i.e., the idea that similar users will sit close to each other in the graph. However, recent studies have revealed that real-world recommendation graphs are often heterophilous, i.e., dissimilar users will also often sit close to each other. One of the reasons for this heterophilia is shilling attacks that obscure the inherent characteristics of the graph and make the derived recommendations less accurate as a consequence. Hence, to cope with low homophily in recommender systems, we propose a recommendation model called PGT4Rec that is based on a Partitioned Graph Transformer. The model integrates label information into the learning process, which allows discriminative neighbourhoods of users to be generated. As such, the framework can both detect shilling attacks and predict user ratings for items. Extensive experiments on real and synthetic datasets show PGT4Rec as not only providing superior performance in these two tasks but also significant robustness to a range of adversarial conditions.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"334-350"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737032/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Modern recommender systems derive predictions from an interaction graph that links users and items. To this end, many of today's state-of-the-art systems use graph neural networks (GNNs) to learn effective representations of these graphs under the assumption of homophily, i.e., the idea that similar users will sit close to each other in the graph. However, recent studies have revealed that real-world recommendation graphs are often heterophilous, i.e., dissimilar users will also often sit close to each other. One of the reasons for this heterophilia is shilling attacks that obscure the inherent characteristics of the graph and make the derived recommendations less accurate as a consequence. Hence, to cope with low homophily in recommender systems, we propose a recommendation model called PGT4Rec that is based on a Partitioned Graph Transformer. The model integrates label information into the learning process, which allows discriminative neighbourhoods of users to be generated. As such, the framework can both detect shilling attacks and predict user ratings for items. Extensive experiments on real and synthetic datasets show PGT4Rec as not only providing superior performance in these two tasks but also significant robustness to a range of adversarial conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信