B-CAVE: A Robust Online Time Series Change Point Detection Algorithm Based on the Between-Class Average and Variance Evaluation Approach

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Aditi Gupta;Adeiza James Onumanyi;Satyadev Ahlawat;Yamuna Prasad;Virendra Singh
{"title":"B-CAVE: A Robust Online Time Series Change Point Detection Algorithm Based on the Between-Class Average and Variance Evaluation Approach","authors":"Aditi Gupta;Adeiza James Onumanyi;Satyadev Ahlawat;Yamuna Prasad;Virendra Singh","doi":"10.1109/TKDE.2024.3492339","DOIUrl":null,"url":null,"abstract":"Change point detection (CPD) is a valuable technique in time series (TS) analysis, which allows for the automatic detection of abrupt variations within the TS. It is often useful in applications such as fault, anomaly, and intrusion detection systems. However, the inherent unpredictability and fluctuations in many real-time data sources pose a challenge for existing contemporary CPD techniques, leading to inconsistent performance across diverse real-time TS with varying characteristics. To address this challenge, we have developed a novel and robust online CPD algorithm constructed from the principle of discriminant analysis and based upon a newly proposed between-class average and variance evaluation approach, termed B-CAVE. Our B-CAVE algorithm features a unique change point measure, which has only one tunable parameter (i.e. the window size) in its computational process. We have also proposed a new evaluation metric that integrates time delay and the false alarm error towards effectively comparing the performance of different CPD methods in the literature. To validate the effectiveness of our method, we conducted experiments using both synthetic and real datasets, demonstrating the superior performance of the B-CAVE algorithm over other prominent existing techniques.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"75-88"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745746/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Change point detection (CPD) is a valuable technique in time series (TS) analysis, which allows for the automatic detection of abrupt variations within the TS. It is often useful in applications such as fault, anomaly, and intrusion detection systems. However, the inherent unpredictability and fluctuations in many real-time data sources pose a challenge for existing contemporary CPD techniques, leading to inconsistent performance across diverse real-time TS with varying characteristics. To address this challenge, we have developed a novel and robust online CPD algorithm constructed from the principle of discriminant analysis and based upon a newly proposed between-class average and variance evaluation approach, termed B-CAVE. Our B-CAVE algorithm features a unique change point measure, which has only one tunable parameter (i.e. the window size) in its computational process. We have also proposed a new evaluation metric that integrates time delay and the false alarm error towards effectively comparing the performance of different CPD methods in the literature. To validate the effectiveness of our method, we conducted experiments using both synthetic and real datasets, demonstrating the superior performance of the B-CAVE algorithm over other prominent existing techniques.
B-CAVE:基于类间平均和方差评估方法的稳健在线时间序列变化点检测算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信