{"title":"ENCODE: Breaking the Trade-Off Between Performance and Efficiency in Long-Term User Behavior Modeling","authors":"Wen-Ji Zhou;Yuhang Zheng;Yinfu Feng;Yunan Ye;Rong Xiao;Long Chen;Xiaosong Yang;Jun Xiao","doi":"10.1109/TKDE.2024.3486445","DOIUrl":null,"url":null,"abstract":"Long-term user behavior sequences are a goldmine for businesses to explore users’ interests to improve Click-Through Rate (CTR). However, it is very challenging to accurately capture users’ long-term interests from their long-term behavior sequences and give quick responses from the online serving systems. To meet such requirements, existing methods “inadvertently” destroy two basic requirements in long-term sequence modeling: \n<bold>R1</b>\n) make full use of the entire sequence to keep the information as much as possible; \n<bold>R2</b>\n) extract information from the most relevant behaviors to keep high relevance between learned interests and current target items. The performance of online serving systems is significantly affected by incomplete and inaccurate user interest information obtained by existing methods. To this end, we propose an efficient two-stage long-term sequence modeling approach, named as \n<bold>E</b>\nfficie\n<bold>N</b>\nt \n<bold>C</b>\nlustering based tw\n<bold>O</b>\n-stage interest mo\n<bold>DE</b>\nling (ENCODE), consisting of offline extraction stage and online inference stage. It not only meets the aforementioned two basic requirements but also achieves a desirable balance between online service efficiency and precision. Specifically, in the offline extraction stage, ENCODE clusters the entire behavior sequence and extracts accurate interests. To reduce the overhead of the clustering process, we design a metric learning-based dimension reduction algorithm that preserves the relative pairwise distances of behaviors in the new feature space. While in the online inference stage, ENCODE takes the off-the-shelf user interests to predict the associations with target items. Besides, to further ensure the relevance between user interests and target items, we adopt the same relevance metric throughout the whole pipeline of ENCODE. The extensive experiment and comparison with SOTA on both industrial and public datasets have demonstrated the effectiveness and efficiency of our proposed ENCODE.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"265-277"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10738306/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term user behavior sequences are a goldmine for businesses to explore users’ interests to improve Click-Through Rate (CTR). However, it is very challenging to accurately capture users’ long-term interests from their long-term behavior sequences and give quick responses from the online serving systems. To meet such requirements, existing methods “inadvertently” destroy two basic requirements in long-term sequence modeling:
R1
) make full use of the entire sequence to keep the information as much as possible;
R2
) extract information from the most relevant behaviors to keep high relevance between learned interests and current target items. The performance of online serving systems is significantly affected by incomplete and inaccurate user interest information obtained by existing methods. To this end, we propose an efficient two-stage long-term sequence modeling approach, named as
E
fficie
N
t
C
lustering based tw
O
-stage interest mo
DE
ling (ENCODE), consisting of offline extraction stage and online inference stage. It not only meets the aforementioned two basic requirements but also achieves a desirable balance between online service efficiency and precision. Specifically, in the offline extraction stage, ENCODE clusters the entire behavior sequence and extracts accurate interests. To reduce the overhead of the clustering process, we design a metric learning-based dimension reduction algorithm that preserves the relative pairwise distances of behaviors in the new feature space. While in the online inference stage, ENCODE takes the off-the-shelf user interests to predict the associations with target items. Besides, to further ensure the relevance between user interests and target items, we adopt the same relevance metric throughout the whole pipeline of ENCODE. The extensive experiment and comparison with SOTA on both industrial and public datasets have demonstrated the effectiveness and efficiency of our proposed ENCODE.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.