{"title":"Explainable Session-Based Recommendation via Path Reasoning","authors":"Yang Cao;Shuo Shang;Jun Wang;Wei Zhang","doi":"10.1109/TKDE.2024.3486326","DOIUrl":null,"url":null,"abstract":"This paper explores explaining session-based recommendation (SR) by path reasoning. Current SR models emphasize accuracy but lack explainability, while traditional path reasoning prioritizes knowledge graph exploration, ignoring sequential patterns present in the session history. Therefore, we propose a generalized hierarchical reinforcement learning framework for SR, which improves the explainability of existing SR models via Path Reasoning, namely PR4SR. Considering the different importance of items to the session, we design the session-level agent to select the items in the session as the starting nodes for path reasoning and the path-level agent to perform path reasoning. In particular, we design a multi-target reward mechanism to adapt to the skip behaviors of sequential patterns in SR and introduce path midpoint reward to enhance the exploration efficiency and accuracy in knowledge graphs. To improve the knowledge graph’s completeness and diversify the paths of explanation, we incorporate extracted feature information from images into the knowledge graph. We instantiate PR4SR in five state-of-the-art SR models (i.e., GRU4REC, NARM, GCSAN, SR-GNN, SASRec) and compare it with other explainable SR frameworks to demonstrate the effectiveness of PR4SR for recommendation and explanation tasks through extensive experiments with these approaches on four datasets.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"278-290"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10742303/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores explaining session-based recommendation (SR) by path reasoning. Current SR models emphasize accuracy but lack explainability, while traditional path reasoning prioritizes knowledge graph exploration, ignoring sequential patterns present in the session history. Therefore, we propose a generalized hierarchical reinforcement learning framework for SR, which improves the explainability of existing SR models via Path Reasoning, namely PR4SR. Considering the different importance of items to the session, we design the session-level agent to select the items in the session as the starting nodes for path reasoning and the path-level agent to perform path reasoning. In particular, we design a multi-target reward mechanism to adapt to the skip behaviors of sequential patterns in SR and introduce path midpoint reward to enhance the exploration efficiency and accuracy in knowledge graphs. To improve the knowledge graph’s completeness and diversify the paths of explanation, we incorporate extracted feature information from images into the knowledge graph. We instantiate PR4SR in five state-of-the-art SR models (i.e., GRU4REC, NARM, GCSAN, SR-GNN, SASRec) and compare it with other explainable SR frameworks to demonstrate the effectiveness of PR4SR for recommendation and explanation tasks through extensive experiments with these approaches on four datasets.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.