Field test of geosynthetic-reinforced floating pile-supported embankments on soft soil

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Rui Rui, Shi-kai He, Long-fan Peng, S.J.M. Van Eekelen, Liang-hao Li, Yu-qiu Ye
{"title":"Field test of geosynthetic-reinforced floating pile-supported embankments on soft soil","authors":"Rui Rui, Shi-kai He, Long-fan Peng, S.J.M. Van Eekelen, Liang-hao Li, Yu-qiu Ye","doi":"10.1016/j.geotexmem.2024.11.010","DOIUrl":null,"url":null,"abstract":"This study conducted field tests on geosynthetic-reinforced floating pile-supported embankments to evaluate the load transfer mechanism and embankment deformation during embankment construction. Vertical pressures on pile caps and subsoils between piles, geosynthetic strains, settlement of pile caps and subsoils between piles, and settlement of the embankment at different elevations were measured throughout the embankment construction. Test results showed that the maximum settlement of the pile cap was approximately 66% of subsoils between the piles. Due to the large settlement of the floating piles, the soil arching was not significantly mobilized. The geosynthetic reinforcement exhibited a maximum tensile strain of 0.2% at the end of embankment construction, indicating a mobilization of low tensioned membrane effect. The predicted equal settlement heights at adjacent piles center and the diagonal pile center were close with an average value of approximately 1.23 times the pile net spacing. The measured vertical pressures on subsoil between piles were compared with calculated results using available analytical models from the literature. The analytical models underestimated the vertical pressures on the subsoils between piles, while the modified Terzaghi's model showed better agreement with the measured results than other analytical models.","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"19 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.geotexmem.2024.11.010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducted field tests on geosynthetic-reinforced floating pile-supported embankments to evaluate the load transfer mechanism and embankment deformation during embankment construction. Vertical pressures on pile caps and subsoils between piles, geosynthetic strains, settlement of pile caps and subsoils between piles, and settlement of the embankment at different elevations were measured throughout the embankment construction. Test results showed that the maximum settlement of the pile cap was approximately 66% of subsoils between the piles. Due to the large settlement of the floating piles, the soil arching was not significantly mobilized. The geosynthetic reinforcement exhibited a maximum tensile strain of 0.2% at the end of embankment construction, indicating a mobilization of low tensioned membrane effect. The predicted equal settlement heights at adjacent piles center and the diagonal pile center were close with an average value of approximately 1.23 times the pile net spacing. The measured vertical pressures on subsoil between piles were compared with calculated results using available analytical models from the literature. The analytical models underestimated the vertical pressures on the subsoils between piles, while the modified Terzaghi's model showed better agreement with the measured results than other analytical models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信