Rui Rui, Shi-kai He, Long-fan Peng, S.J.M. Van Eekelen, Liang-hao Li, Yu-qiu Ye
{"title":"Field test of geosynthetic-reinforced floating pile-supported embankments on soft soil","authors":"Rui Rui, Shi-kai He, Long-fan Peng, S.J.M. Van Eekelen, Liang-hao Li, Yu-qiu Ye","doi":"10.1016/j.geotexmem.2024.11.010","DOIUrl":null,"url":null,"abstract":"This study conducted field tests on geosynthetic-reinforced floating pile-supported embankments to evaluate the load transfer mechanism and embankment deformation during embankment construction. Vertical pressures on pile caps and subsoils between piles, geosynthetic strains, settlement of pile caps and subsoils between piles, and settlement of the embankment at different elevations were measured throughout the embankment construction. Test results showed that the maximum settlement of the pile cap was approximately 66% of subsoils between the piles. Due to the large settlement of the floating piles, the soil arching was not significantly mobilized. The geosynthetic reinforcement exhibited a maximum tensile strain of 0.2% at the end of embankment construction, indicating a mobilization of low tensioned membrane effect. The predicted equal settlement heights at adjacent piles center and the diagonal pile center were close with an average value of approximately 1.23 times the pile net spacing. The measured vertical pressures on subsoil between piles were compared with calculated results using available analytical models from the literature. The analytical models underestimated the vertical pressures on the subsoils between piles, while the modified Terzaghi's model showed better agreement with the measured results than other analytical models.","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"19 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.geotexmem.2024.11.010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducted field tests on geosynthetic-reinforced floating pile-supported embankments to evaluate the load transfer mechanism and embankment deformation during embankment construction. Vertical pressures on pile caps and subsoils between piles, geosynthetic strains, settlement of pile caps and subsoils between piles, and settlement of the embankment at different elevations were measured throughout the embankment construction. Test results showed that the maximum settlement of the pile cap was approximately 66% of subsoils between the piles. Due to the large settlement of the floating piles, the soil arching was not significantly mobilized. The geosynthetic reinforcement exhibited a maximum tensile strain of 0.2% at the end of embankment construction, indicating a mobilization of low tensioned membrane effect. The predicted equal settlement heights at adjacent piles center and the diagonal pile center were close with an average value of approximately 1.23 times the pile net spacing. The measured vertical pressures on subsoil between piles were compared with calculated results using available analytical models from the literature. The analytical models underestimated the vertical pressures on the subsoils between piles, while the modified Terzaghi's model showed better agreement with the measured results than other analytical models.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.