Scott D. Ambos, Nicholas S. Manganaro, Matthew DeCapua, Dongzhou Zhang, Phuong Q. H. Nguyen, Jun Yan, James P. S. Walsh
{"title":"Fragmenting the Kagomé Lattice: Pressure-Tuned Anisotropy of Cu2+ Triangles in a Novel Atacamite Relative CaCu(OH)3Cl","authors":"Scott D. Ambos, Nicholas S. Manganaro, Matthew DeCapua, Dongzhou Zhang, Phuong Q. H. Nguyen, Jun Yan, James P. S. Walsh","doi":"10.1021/acs.jpcc.4c07695","DOIUrl":null,"url":null,"abstract":"The atacamite family of copper halide minerals contains several prominent quantum spin liquid candidate materials, chiefly herbertsmithite. Unfortunately, an intrinsic chemical disorder in herbertsmithite complicates attempts to perform magneto-structural correlations that deconvolute the fundamental magnetic exchange terms that underpin frustration. We sought to synthesize disorder-free zero-dimensional analogues of the atacamites that retain the basic local geometry required for frustration (i.e., triangular arrangements of spins) while avoiding the extended lattices that are prone to site disorder. We present here the synthesis of a novel trimetallic compound, CaCu(OH)<sub>3</sub>Cl, that is reminiscent in composition and structure to the known atacamites. CaCu(OH)<sub>3</sub>Cl features mildly Jahn–Teller distorted copper triangles that represent zero-dimensional analogues to the triangles that comprise the kagomé layers in herbertsmithite. We present a high-pressure synchrotron single crystal X-ray diffraction study of CaCu(OH)<sub>3</sub>Cl up to 10.1(2) GPa and show that pressure counteracts the magnetic Jahn–Teller distortion of the square planar Cu(OH)<sub>4</sub> units that comprise the copper triangles, offering a new direction for optimizing magnetic frustration.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07695","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The atacamite family of copper halide minerals contains several prominent quantum spin liquid candidate materials, chiefly herbertsmithite. Unfortunately, an intrinsic chemical disorder in herbertsmithite complicates attempts to perform magneto-structural correlations that deconvolute the fundamental magnetic exchange terms that underpin frustration. We sought to synthesize disorder-free zero-dimensional analogues of the atacamites that retain the basic local geometry required for frustration (i.e., triangular arrangements of spins) while avoiding the extended lattices that are prone to site disorder. We present here the synthesis of a novel trimetallic compound, CaCu(OH)3Cl, that is reminiscent in composition and structure to the known atacamites. CaCu(OH)3Cl features mildly Jahn–Teller distorted copper triangles that represent zero-dimensional analogues to the triangles that comprise the kagomé layers in herbertsmithite. We present a high-pressure synchrotron single crystal X-ray diffraction study of CaCu(OH)3Cl up to 10.1(2) GPa and show that pressure counteracts the magnetic Jahn–Teller distortion of the square planar Cu(OH)4 units that comprise the copper triangles, offering a new direction for optimizing magnetic frustration.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.