{"title":"Quinazolinone-to-Isoquinoline Metamorphosis by Ruthenium-Catalyzed [4+2] Annulation with Sulfoxonium Ylides","authors":"Xiaogang Wang, Fei Yuan, Michal Szostak","doi":"10.1021/acs.orglett.4c04103","DOIUrl":null,"url":null,"abstract":"Molecular editing of quinazolinones to isoquinolines by a novel ruthenium-catalyzed [4+2] annulation with sulfoxonium ylides has been developed. The method permits the precise and rapid assembly of multisubstituted aminoisoquinolines, a class of heterocycles that play a privileged role in organic synthesis and pharmaceutical development. This new catalytic process exhibits novel programmability, including directed C–H acetylation, nucleophilic cyclization, and alcoholysis. Remarkably, various 2-arylquinazolinones and sulfoxonium ylides could be employed in excellent yields with broad functional group tolerance. This heterocycle-to-heterocycle protocol is compatible with green chemistry using an EtOH solvent and releasing H<sub>2</sub>O and dimethyl sulfoxide as byproducts.","PeriodicalId":54,"journal":{"name":"Organic Letters","volume":"77 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.orglett.4c04103","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular editing of quinazolinones to isoquinolines by a novel ruthenium-catalyzed [4+2] annulation with sulfoxonium ylides has been developed. The method permits the precise and rapid assembly of multisubstituted aminoisoquinolines, a class of heterocycles that play a privileged role in organic synthesis and pharmaceutical development. This new catalytic process exhibits novel programmability, including directed C–H acetylation, nucleophilic cyclization, and alcoholysis. Remarkably, various 2-arylquinazolinones and sulfoxonium ylides could be employed in excellent yields with broad functional group tolerance. This heterocycle-to-heterocycle protocol is compatible with green chemistry using an EtOH solvent and releasing H2O and dimethyl sulfoxide as byproducts.
期刊介绍:
Organic Letters invites original reports of fundamental research in all branches of the theory and practice of organic, physical organic, organometallic,medicinal, and bioorganic chemistry. Organic Letters provides rapid disclosure of the key elements of significant studies that are of interest to a large portion of the organic community. In selecting manuscripts for publication, the Editors place emphasis on the originality, quality and wide interest of the work. Authors should provide enough background information to place the new disclosure in context and to justify the rapid publication format. Back-to-back Letters will be considered. Full details should be reserved for an Article, which should appear in due course.