Realistic Estimation of Critical Exponents for Predicting the Magnetocaloric Effect in La0.7Sr0.3–xSmxMn0.95Ni0.05O3 (x = 0, 0.05, 0.10, 0.15) Manganites
{"title":"Realistic Estimation of Critical Exponents for Predicting the Magnetocaloric Effect in La0.7Sr0.3–xSmxMn0.95Ni0.05O3 (x = 0, 0.05, 0.10, 0.15) Manganites","authors":"Hanen Hammami, Chahra Amairia","doi":"10.1002/adts.202400933","DOIUrl":null,"url":null,"abstract":"In this article, is introduce a calculation approach derived from integrating the Landau theory with the Arrott–Noakes equation. Employing a creative formulation, is conduct simulations to explore the magnetic entropy change, <span data-altimg=\"/cms/asset/c5e07f1f-d7e1-434f-bdd2-f158c3b5c60a/adts202400933-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400933-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"6\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400933:adts202400933-math-0001\" display=\"inline\" location=\"graphic/adts202400933-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"6\" data-semantic-content=\"0\" data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Δ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><msub data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">M</mi></msub></mrow></mrow>$ - {{\\Delta}}{{{\\mathrm{S}}}_{\\mathrm{M}}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> within a random ferromagnetic system. This theoretical approach is used for the examination of a given La<sub>0.7</sub>Sr<sub>0.3–x</sub>Sm<sub>x</sub>Mn<sub>0.95</sub>Ni<sub>0.05</sub>O<sub>3</sub> (x = 0, 0.05, 0.10, 0.15) manganites. Initially, the critical exponents (𝛾; 𝛽) of these compounds are estimated. It has been noted that the magnetic behavior of the examined materials near the phase transition deviate from the standard patterns observed in typical universality classes. Subsequently, these exponents are exploited to simulate the isothermal <span data-altimg=\"/cms/asset/786cd81a-d880-4cbb-b20a-70e9a47e2e7b/adts202400933-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400933-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"15\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M Baseline left parenthesis normal upper H comma normal upper T right parenthesis\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"16\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,13\" data-semantic-content=\"14\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,11\" data-semantic-content=\"12,2\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"4\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"5,10\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"6,7,8\" data-semantic-content=\"7\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400933:adts202400933-math-0002\" display=\"inline\" location=\"graphic/adts202400933-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"15\" data-semantic-content=\"0\" data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M Baseline left parenthesis normal upper H comma normal upper T right parenthesis\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"16\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,13\" data-semantic-content=\"14\" data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Δ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"4,11\" data-semantic-content=\"12,2\" data-semantic-parent=\"15\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><msub data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"4\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\" mathvariant=\"normal\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">M</mi></msub><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"9\" data-semantic-content=\"5,10\" data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"6,7,8\" data-semantic-content=\"7\" data-semantic-parent=\"11\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">T</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow></mrow></mrow>$ - {{\\Delta}}{{{\\mathrm{S}}}_{\\mathrm{M}}}( {{\\mathrm{H}},{\\mathrm{T}}} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> curves under higher magnetic fields. The predicted relative cooling power values reach 420.3, 415.7, 412.5, and 408.4 J.kg<sup>−1</sup>K<sup>−1</sup> under 10 T applied magnetic field for La<sub>0.7</sub>Sr<sub>0.3–x</sub>Sm<sub>x</sub>Mn<sub>0.95</sub>Ni<sub>0.05</sub>O<sub>3</sub> with x = 0, 0.05, 0.10 and 0.15, respectively.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"41 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400933","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, is introduce a calculation approach derived from integrating the Landau theory with the Arrott–Noakes equation. Employing a creative formulation, is conduct simulations to explore the magnetic entropy change, within a random ferromagnetic system. This theoretical approach is used for the examination of a given La0.7Sr0.3–xSmxMn0.95Ni0.05O3 (x = 0, 0.05, 0.10, 0.15) manganites. Initially, the critical exponents (𝛾; 𝛽) of these compounds are estimated. It has been noted that the magnetic behavior of the examined materials near the phase transition deviate from the standard patterns observed in typical universality classes. Subsequently, these exponents are exploited to simulate the isothermal curves under higher magnetic fields. The predicted relative cooling power values reach 420.3, 415.7, 412.5, and 408.4 J.kg−1K−1 under 10 T applied magnetic field for La0.7Sr0.3–xSmxMn0.95Ni0.05O3 with x = 0, 0.05, 0.10 and 0.15, respectively.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics