How Do Particles with Complex Interactions Self-Assemble?

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lara Koehler, Pierre Ronceray, Martin Lenz
{"title":"How Do Particles with Complex Interactions Self-Assemble?","authors":"Lara Koehler, Pierre Ronceray, Martin Lenz","doi":"10.1103/physrevx.14.041061","DOIUrl":null,"url":null,"abstract":"In living cells, proteins self-assemble into large functional structures based on specific interactions between molecularly complex patches. Because of this complexity, protein self-assembly results from a competition between a large number of distinct interaction energies, of the order of one per pair of patches. However, current self-assembly models typically ignore this aspect, and the principles by which it determines the large-scale structure of protein assemblies are largely unknown. Here, we use Monte Carlo simulations and machine learning to start to unravel these principles. We observe that despite widespread geometrical frustration, aggregates of particles with complex interactions fall within only a few categories that often display high degrees of spatial order, including crystals, fibers, and oligomers. We then successfully identify the most relevant aspect of the interaction complexity in predicting these outcomes, namely, the particles’ ability to form periodic structures. Our results provide a first extensive characterization of the rich design space associated with identical particles with complex interactions and could inspire engineered self-assembling nano-objects as well as help us to understand the emergence of robust functional protein structures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"11 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041061","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In living cells, proteins self-assemble into large functional structures based on specific interactions between molecularly complex patches. Because of this complexity, protein self-assembly results from a competition between a large number of distinct interaction energies, of the order of one per pair of patches. However, current self-assembly models typically ignore this aspect, and the principles by which it determines the large-scale structure of protein assemblies are largely unknown. Here, we use Monte Carlo simulations and machine learning to start to unravel these principles. We observe that despite widespread geometrical frustration, aggregates of particles with complex interactions fall within only a few categories that often display high degrees of spatial order, including crystals, fibers, and oligomers. We then successfully identify the most relevant aspect of the interaction complexity in predicting these outcomes, namely, the particles’ ability to form periodic structures. Our results provide a first extensive characterization of the rich design space associated with identical particles with complex interactions and could inspire engineered self-assembling nano-objects as well as help us to understand the emergence of robust functional protein structures. Published by the American Physical Society 2024
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信