{"title":"Neutrino mass bounds from DESI 2024 are relaxed by Planck PR4 and cosmological supernovae","authors":"Itamar J. Allali and Alessio Notari","doi":"10.1088/1475-7516/2024/12/020","DOIUrl":null,"url":null,"abstract":"The recent DESI 2024 Baryon Acoustic Oscillations (BAO) measurements combined with the CMB data from the Planck 18 PR3 dataset and the Planck PR4+ACT DR6 lensing data, with a prior on the sum of the neutrino masses ∑ mν > 0, leads to a strong constraint, ∑ mν < 0.072 eV, which would exclude the inverted neutrino hierarchy and put some tension on even the standard hierarchy. We show that actually this bound gets significantly relaxed when combining the new DESI measurements with the HiLLiPoP + LoLLiPoP likelihoods, based on the Planck 2020 PR4 dataset, and with supernovae datasets. We note that the fact that neutrino masses are pushed towards zero, and even towards negative values, is known to be correlated with the so-called AL tension, a mismatch between lensing and power spectrum measurements in the Planck PR3 data, which is reduced by HiLLiPoP + LoLLiPoP to less than 1σ. We find ∑ mν < 0.1 eV and ∑ mν < 0.12 eV, with the supernovae Pantheon+ and DES-SN5YR datasets respectively. The shift caused by these datasets is more compatible with the expectations from neutrino oscillation experiments, and both the normal and inverted hierarchy scenarios remain now viable, even with the ∑ mν > 0 prior. Finally, we analyze neutrino mass bounds in an extension of ΛCDM that addresses the H0 tension, with extra fluid Dark Radiation, finding that in such models bounds are further relaxed and the posterior probability for ∑ mν begins to exhibit a peak at positive values.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"37 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/020","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The recent DESI 2024 Baryon Acoustic Oscillations (BAO) measurements combined with the CMB data from the Planck 18 PR3 dataset and the Planck PR4+ACT DR6 lensing data, with a prior on the sum of the neutrino masses ∑ mν > 0, leads to a strong constraint, ∑ mν < 0.072 eV, which would exclude the inverted neutrino hierarchy and put some tension on even the standard hierarchy. We show that actually this bound gets significantly relaxed when combining the new DESI measurements with the HiLLiPoP + LoLLiPoP likelihoods, based on the Planck 2020 PR4 dataset, and with supernovae datasets. We note that the fact that neutrino masses are pushed towards zero, and even towards negative values, is known to be correlated with the so-called AL tension, a mismatch between lensing and power spectrum measurements in the Planck PR3 data, which is reduced by HiLLiPoP + LoLLiPoP to less than 1σ. We find ∑ mν < 0.1 eV and ∑ mν < 0.12 eV, with the supernovae Pantheon+ and DES-SN5YR datasets respectively. The shift caused by these datasets is more compatible with the expectations from neutrino oscillation experiments, and both the normal and inverted hierarchy scenarios remain now viable, even with the ∑ mν > 0 prior. Finally, we analyze neutrino mass bounds in an extension of ΛCDM that addresses the H0 tension, with extra fluid Dark Radiation, finding that in such models bounds are further relaxed and the posterior probability for ∑ mν begins to exhibit a peak at positive values.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.