{"title":"Generalized Pseudospectral Shattering and Inverse-Free Matrix Pencil Diagonalization","authors":"James Demmel, Ioana Dumitriu, Ryan Schneider","doi":"10.1007/s10208-024-09682-7","DOIUrl":null,"url":null,"abstract":"<p>We present a randomized, inverse-free algorithm for producing an approximate diagonalization of any <span>\\(n \\times n\\)</span> matrix pencil (<i>A</i>, <i>B</i>). The bulk of the algorithm rests on a randomized divide-and-conquer eigensolver for the generalized eigenvalue problem originally proposed by Ballard, Demmel and Dumitriu (Technical Report 2010). We demonstrate that this divide-and-conquer approach can be formulated to succeed with high probability provided the input pencil is sufficiently well-behaved, which is accomplished by generalizing the recent pseudospectral shattering work of Banks, Garza-Vargas, Kulkarni and Srivastava (Foundations of Computational Mathematics 2023). In particular, we show that perturbing and scaling (<i>A</i>, <i>B</i>) regularizes its pseudospectra, allowing divide-and-conquer to run over a simple random grid and in turn producing an accurate diagonalization of (<i>A</i>, <i>B</i>) in the backward error sense. The main result of the paper states the existence of a randomized algorithm that with high probability (and in exact arithmetic) produces invertible <i>S</i>, <i>T</i> and diagonal <i>D</i> such that <span>\\(||A - SDT^{-1}||_2 \\le \\varepsilon \\)</span> and <span>\\(||B - ST^{-1}||_2 \\le \\varepsilon \\)</span> in at most <span>\\(O \\left( \\log ^2 \\left( \\frac{n}{\\varepsilon } \\right) T_{\\text {MM}}(n) \\right) \\)</span> operations, where <span>\\(T_{\\text {MM}}(n)\\)</span> is the asymptotic complexity of matrix multiplication. This not only provides a new set of guarantees for highly parallel generalized eigenvalue solvers but also establishes nearly matrix multiplication time as an upper bound on the complexity of inverse-free, exact-arithmetic matrix pencil diagonalization.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"47 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09682-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a randomized, inverse-free algorithm for producing an approximate diagonalization of any \(n \times n\) matrix pencil (A, B). The bulk of the algorithm rests on a randomized divide-and-conquer eigensolver for the generalized eigenvalue problem originally proposed by Ballard, Demmel and Dumitriu (Technical Report 2010). We demonstrate that this divide-and-conquer approach can be formulated to succeed with high probability provided the input pencil is sufficiently well-behaved, which is accomplished by generalizing the recent pseudospectral shattering work of Banks, Garza-Vargas, Kulkarni and Srivastava (Foundations of Computational Mathematics 2023). In particular, we show that perturbing and scaling (A, B) regularizes its pseudospectra, allowing divide-and-conquer to run over a simple random grid and in turn producing an accurate diagonalization of (A, B) in the backward error sense. The main result of the paper states the existence of a randomized algorithm that with high probability (and in exact arithmetic) produces invertible S, T and diagonal D such that \(||A - SDT^{-1}||_2 \le \varepsilon \) and \(||B - ST^{-1}||_2 \le \varepsilon \) in at most \(O \left( \log ^2 \left( \frac{n}{\varepsilon } \right) T_{\text {MM}}(n) \right) \) operations, where \(T_{\text {MM}}(n)\) is the asymptotic complexity of matrix multiplication. This not only provides a new set of guarantees for highly parallel generalized eigenvalue solvers but also establishes nearly matrix multiplication time as an upper bound on the complexity of inverse-free, exact-arithmetic matrix pencil diagonalization.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.