Thomas Welte, Veena K. Vuttaradhi, Eleonora Y. Khlebus, Allison Brodsky, Alejandra Flores Legarreta, Joseph Celestino, Reid T. Powell, Clifford C. Stephan, Nghi Nguyen, Jian Li, Shiro Takamatsu, Katherine Calzoncinth, Anil K. Sood, David M. Gershenson, P. Andrew Futreal, Barrett Lawson, Robert Tyler. Hillman
{"title":"Gain-of-Function Chromatin Remodeling Activity of Oncogenic FOXL2-C134W Reprograms Glucocorticoid Receptor Occupancy to Drive Granulosa Cell Tumors","authors":"Thomas Welte, Veena K. Vuttaradhi, Eleonora Y. Khlebus, Allison Brodsky, Alejandra Flores Legarreta, Joseph Celestino, Reid T. Powell, Clifford C. Stephan, Nghi Nguyen, Jian Li, Shiro Takamatsu, Katherine Calzoncinth, Anil K. Sood, David M. Gershenson, P. Andrew Futreal, Barrett Lawson, Robert Tyler. Hillman","doi":"10.1158/0008-5472.can-24-2341","DOIUrl":null,"url":null,"abstract":"Adult type ovarian granulosa cell tumors (AGCTs) are rare malignancies with the near universal c.C402G (p.Cys134Trp) somatic mutation in FOXL2, a Forkhead box-family transcription factor important for ovarian function. Relapsed AGCT is incurable, but the mechanism of the unique FOXL2 mutation could confer therapeutic vulnerabilities. To identify FOXL2-C134W-dependent pharmacologic synergies, we created and characterized endogenous FOXL2 isogenic AGCT cells and an AGCT tumoroid biobank. A drug screen identified that glucocorticoids promote FOXL2-C134W-dependent AGCT growth. Epigenetic investigation revealed that the Cys134Trp mutation exposes latent DNA sequence-specific chromatin remodeling activity in FOXL2. FOXL2-C134W-dependent chromatin remodeling activity redirected glucocorticoid receptor chromatin occupancy to drive hyaluronan synthase 2 gene expression and increase extracellular hyaluronan secretion. Treatment of AGCT models with hyaluronidase reduced viability, and dexamethasone rescued this effect. Combinatorial drug-drug interaction experiments demonstrated that dexamethasone antagonizes the potency of paclitaxel, a chemotherapy agent frequently used in the treatment of AGCT. Thus, gain-of-function pioneering activity contributes to the oncogenic mechanism of FOXL2-C134W and creates a potentially targetable synergy with glucocorticoid signaling.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"20 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-2341","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adult type ovarian granulosa cell tumors (AGCTs) are rare malignancies with the near universal c.C402G (p.Cys134Trp) somatic mutation in FOXL2, a Forkhead box-family transcription factor important for ovarian function. Relapsed AGCT is incurable, but the mechanism of the unique FOXL2 mutation could confer therapeutic vulnerabilities. To identify FOXL2-C134W-dependent pharmacologic synergies, we created and characterized endogenous FOXL2 isogenic AGCT cells and an AGCT tumoroid biobank. A drug screen identified that glucocorticoids promote FOXL2-C134W-dependent AGCT growth. Epigenetic investigation revealed that the Cys134Trp mutation exposes latent DNA sequence-specific chromatin remodeling activity in FOXL2. FOXL2-C134W-dependent chromatin remodeling activity redirected glucocorticoid receptor chromatin occupancy to drive hyaluronan synthase 2 gene expression and increase extracellular hyaluronan secretion. Treatment of AGCT models with hyaluronidase reduced viability, and dexamethasone rescued this effect. Combinatorial drug-drug interaction experiments demonstrated that dexamethasone antagonizes the potency of paclitaxel, a chemotherapy agent frequently used in the treatment of AGCT. Thus, gain-of-function pioneering activity contributes to the oncogenic mechanism of FOXL2-C134W and creates a potentially targetable synergy with glucocorticoid signaling.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.