David Allard, Jeanne Cormery, Salma Bricha, Camille Fuselier, Farnoosh Abbas Aghababazadeh, Lucie Giraud, Emma Skora, Benjamin Haibe-Kains, John Stagg
{"title":"Adenosine Uptake through the Nucleoside Transporter ENT1 Suppresses Antitumor Immunity and T Cell Pyrimidine Synthesis","authors":"David Allard, Jeanne Cormery, Salma Bricha, Camille Fuselier, Farnoosh Abbas Aghababazadeh, Lucie Giraud, Emma Skora, Benjamin Haibe-Kains, John Stagg","doi":"10.1158/0008-5472.can-24-1875","DOIUrl":null,"url":null,"abstract":"Immunosuppression by adenosine is an important cancer immune checkpoint. Extracellular adenosine signals through specific receptors and can be transported across the cell membrane through nucleoside transporters. While adenosine receptors are well-known to regulate tumor immunity, the impact of adenosine transporters remains unexplored. In this study, we investigated the effect on tumor immunity of equilibrative nucleoside transporter-1 (ENT1), the major regulator of extracellular adenosine concentrations. Blocking or deleting host ENT1 significantly enhanced CD8+ T cell-dependent antitumor responses. Tumors inoculated into ENT1-deficient mice showed increased infiltration of effector CD8+ T cells with an enhanced cytotoxic transcriptomic profile and significant upregulation of granzyme B, IFN-γ, IL-2, TNF-α, and CXCL10. ENT1-deficiency was further associated with decreased tumor-infiltrating T regulatory cells and CD206high macrophages and suppressed CCL17 production. ENT1-deficiency notably potentiated the therapeutic activity of PD-1 blockade. T cells upregulated ENT1 upon activation, and blocking ENT1 enhanced their function when co-cultured with cognate antigen/HLA-matched melanoma cells. Mechanistically, ENT1-mediated adenosine uptake inhibited the activity of phosphoribosyl pyrophosphate synthetase (PRPS) in activated T cells, thereby suppressing production of uridine 5′-monophosphate (UMP) and its derivatives required for DNA and RNA synthesis. In summary, this study identified ENT1-mediated adenosine uptake as an important mechanism of adenosine-mediated immunosuppression and pyrimidine starvation that can be targeted to enhance antitumor T cell responses.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"9 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1875","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunosuppression by adenosine is an important cancer immune checkpoint. Extracellular adenosine signals through specific receptors and can be transported across the cell membrane through nucleoside transporters. While adenosine receptors are well-known to regulate tumor immunity, the impact of adenosine transporters remains unexplored. In this study, we investigated the effect on tumor immunity of equilibrative nucleoside transporter-1 (ENT1), the major regulator of extracellular adenosine concentrations. Blocking or deleting host ENT1 significantly enhanced CD8+ T cell-dependent antitumor responses. Tumors inoculated into ENT1-deficient mice showed increased infiltration of effector CD8+ T cells with an enhanced cytotoxic transcriptomic profile and significant upregulation of granzyme B, IFN-γ, IL-2, TNF-α, and CXCL10. ENT1-deficiency was further associated with decreased tumor-infiltrating T regulatory cells and CD206high macrophages and suppressed CCL17 production. ENT1-deficiency notably potentiated the therapeutic activity of PD-1 blockade. T cells upregulated ENT1 upon activation, and blocking ENT1 enhanced their function when co-cultured with cognate antigen/HLA-matched melanoma cells. Mechanistically, ENT1-mediated adenosine uptake inhibited the activity of phosphoribosyl pyrophosphate synthetase (PRPS) in activated T cells, thereby suppressing production of uridine 5′-monophosphate (UMP) and its derivatives required for DNA and RNA synthesis. In summary, this study identified ENT1-mediated adenosine uptake as an important mechanism of adenosine-mediated immunosuppression and pyrimidine starvation that can be targeted to enhance antitumor T cell responses.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.