The cost of solving linear differential equations on a quantum computer: fast-forwarding to explicit resource counts

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-12-10 DOI:10.22331/q-2024-12-10-1553
David Jennings, Matteo Lostaglio, Robert B. Lowrie, Sam Pallister, Andrew T. Sornborger
{"title":"The cost of solving linear differential equations on a quantum computer: fast-forwarding to explicit resource counts","authors":"David Jennings, Matteo Lostaglio, Robert B. Lowrie, Sam Pallister, Andrew T. Sornborger","doi":"10.22331/q-2024-12-10-1553","DOIUrl":null,"url":null,"abstract":"How well can quantum computers simulate classical dynamical systems? There is increasing effort in developing quantum algorithms to efficiently simulate dynamics beyond Hamiltonian simulation, but so far exact resource estimates are not known. In this work, we provide two significant contributions. First, we give the first non-asymptotic computation of the cost of encoding the solution to general linear ordinary differential equations into quantum states – either the solution at a final time, or an encoding of the whole history within a time interval. Second, we show that the stability properties of a large class of classical dynamics allow their fast-forwarding, making their quantum simulation much more time-efficient. From this point of view, quantum Hamiltonian dynamics is a boundary case that does not allow this form of stability-induced fast-forwarding. In particular, we find that the history state can always be output with complexity $O(T^{1/2})$ for any stable linear system. We present a range of asymptotic improvements over state-of-the-art in various regimes. We illustrate our results with a family of dynamics including linearized collisional plasma problems, coupled, damped, forced harmonic oscillators and dissipative nonlinear problems. In this case the scaling is quadratically improved, and leads to significant reductions in the query counts after inclusion of all relevant constant prefactors.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"13 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-12-10-1553","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

How well can quantum computers simulate classical dynamical systems? There is increasing effort in developing quantum algorithms to efficiently simulate dynamics beyond Hamiltonian simulation, but so far exact resource estimates are not known. In this work, we provide two significant contributions. First, we give the first non-asymptotic computation of the cost of encoding the solution to general linear ordinary differential equations into quantum states – either the solution at a final time, or an encoding of the whole history within a time interval. Second, we show that the stability properties of a large class of classical dynamics allow their fast-forwarding, making their quantum simulation much more time-efficient. From this point of view, quantum Hamiltonian dynamics is a boundary case that does not allow this form of stability-induced fast-forwarding. In particular, we find that the history state can always be output with complexity $O(T^{1/2})$ for any stable linear system. We present a range of asymptotic improvements over state-of-the-art in various regimes. We illustrate our results with a family of dynamics including linearized collisional plasma problems, coupled, damped, forced harmonic oscillators and dissipative nonlinear problems. In this case the scaling is quadratically improved, and leads to significant reductions in the query counts after inclusion of all relevant constant prefactors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信