{"title":"Borrowing using historical-bias power prior with empirical Bayes.","authors":"Hsin-Yu Lin, Elizabeth Slate","doi":"10.1080/10543406.2024.2429461","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptively incorporating historical information into analyses of current data can improve the precision of inference without requiring additional new observation. Unfortunately, not all borrowing methods are suitable when limited historical studies are available. When a single historical study is available, the power priors control the amount of information to borrow via specification of a weight parameter that discounts the contribution of the historical data in a likelihood combined with current data. We develop a new type of conditional power prior called the historical-bias power prior using an empirical Bayes approach. It relaxes the assumption of the traditional power priors to allow for historical bias. Moreover, our new weight function controls the amount of borrowing and only borrows when historical data satisfy the borrowing criteria. This is achieved by embedding the Frequentist test-then-pool approach in the weight function. Hence, the historical-bias power prior builds a bridge between the Frequentist test-then-pool and the Bayesian power prior. In the simulation, we examine the impact of historical bias on the operating characteristics for borrowing approaches, which has not been discussed in previous literature. The results show that the historical-bias power prior yields accurate estimation and robustly powerful tests for the experimental treatment effect with good type I error control, especially when historical bias exists.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-31"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2429461","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptively incorporating historical information into analyses of current data can improve the precision of inference without requiring additional new observation. Unfortunately, not all borrowing methods are suitable when limited historical studies are available. When a single historical study is available, the power priors control the amount of information to borrow via specification of a weight parameter that discounts the contribution of the historical data in a likelihood combined with current data. We develop a new type of conditional power prior called the historical-bias power prior using an empirical Bayes approach. It relaxes the assumption of the traditional power priors to allow for historical bias. Moreover, our new weight function controls the amount of borrowing and only borrows when historical data satisfy the borrowing criteria. This is achieved by embedding the Frequentist test-then-pool approach in the weight function. Hence, the historical-bias power prior builds a bridge between the Frequentist test-then-pool and the Bayesian power prior. In the simulation, we examine the impact of historical bias on the operating characteristics for borrowing approaches, which has not been discussed in previous literature. The results show that the historical-bias power prior yields accurate estimation and robustly powerful tests for the experimental treatment effect with good type I error control, especially when historical bias exists.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.