Partition-based k-space synthesis for multi-contrast parallel imaging.

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yuxia Huang, Zhonghui Wu, Xiaoling Xu, Minghui Zhang, Shanshan Wang, Qiegen Liu
{"title":"Partition-based k-space synthesis for multi-contrast parallel imaging.","authors":"Yuxia Huang, Zhonghui Wu, Xiaoling Xu, Minghui Zhang, Shanshan Wang, Qiegen Liu","doi":"10.1016/j.mri.2024.110297","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Multi-contrast magnetic resonance imaging is a significant and essential medical imaging technique. However, multi-contrast imaging has longer acquisition time and is easy to cause motion artifacts. In particular, the acquisition time for a T2-weighted image is prolonged due to its longer repetition time (TR). On the contrary, T1-weighted image has a shorter TR. Therefore, utilizing complementary information across T1 and T2-weighted image is a way to decrease the overall imaging time. Previous T1-assisted T2 reconstruction methods have mostly focused on image domain using whole-based image fusion approaches. The image domain reconstruction method has the defects of high computational complexity and limited flexibility. To address this issue, we propose a novel multi-contrast imaging method called partition-based k-space synthesis (PKS) which can achieve better reconstruction quality of T2-weighted image by feature fusion.</p><p><strong>Methods: </strong>Concretely, we first decompose fully-sampled T1 k-space data and under-sampled T2 k-space data into two sub-data, separately. Then two new objects are constructed by combining the two sub-T1/T2 data. After that, the two new objects as the whole data to realize the reconstruction of T2-weighted image.</p><p><strong>Results: </strong>Experimental results showed that the developed PKS scheme can achieve comparable or better results than using traditional k-space parallel imaging (SAKE) that processes each contrast independently. At the same time, our method showed good adaptability and robustness under different contrast-assisted and T1-T2 ratios. Efficient target modal image reconstruction under various conditions were realized and had excellent performance in restoring image quality and preserving details.</p><p><strong>Conclusions: </strong>This work proposed a PKS multi-contrast method to assist in target mode image reconstruction. We have conducted extensive experiments on different multi-contrast, diverse ratios of T1 to T2 and different sampling masks to demonstrate the generalization and robustness of our proposed model.</p>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":" ","pages":"110297"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mri.2024.110297","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Multi-contrast magnetic resonance imaging is a significant and essential medical imaging technique. However, multi-contrast imaging has longer acquisition time and is easy to cause motion artifacts. In particular, the acquisition time for a T2-weighted image is prolonged due to its longer repetition time (TR). On the contrary, T1-weighted image has a shorter TR. Therefore, utilizing complementary information across T1 and T2-weighted image is a way to decrease the overall imaging time. Previous T1-assisted T2 reconstruction methods have mostly focused on image domain using whole-based image fusion approaches. The image domain reconstruction method has the defects of high computational complexity and limited flexibility. To address this issue, we propose a novel multi-contrast imaging method called partition-based k-space synthesis (PKS) which can achieve better reconstruction quality of T2-weighted image by feature fusion.

Methods: Concretely, we first decompose fully-sampled T1 k-space data and under-sampled T2 k-space data into two sub-data, separately. Then two new objects are constructed by combining the two sub-T1/T2 data. After that, the two new objects as the whole data to realize the reconstruction of T2-weighted image.

Results: Experimental results showed that the developed PKS scheme can achieve comparable or better results than using traditional k-space parallel imaging (SAKE) that processes each contrast independently. At the same time, our method showed good adaptability and robustness under different contrast-assisted and T1-T2 ratios. Efficient target modal image reconstruction under various conditions were realized and had excellent performance in restoring image quality and preserving details.

Conclusions: This work proposed a PKS multi-contrast method to assist in target mode image reconstruction. We have conducted extensive experiments on different multi-contrast, diverse ratios of T1 to T2 and different sampling masks to demonstrate the generalization and robustness of our proposed model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信