{"title":"Partition-based k-space synthesis for multi-contrast parallel imaging.","authors":"Yuxia Huang, Zhonghui Wu, Xiaoling Xu, Minghui Zhang, Shanshan Wang, Qiegen Liu","doi":"10.1016/j.mri.2024.110297","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Multi-contrast magnetic resonance imaging is a significant and essential medical imaging technique. However, multi-contrast imaging has longer acquisition time and is easy to cause motion artifacts. In particular, the acquisition time for a T2-weighted image is prolonged due to its longer repetition time (TR). On the contrary, T1-weighted image has a shorter TR. Therefore, utilizing complementary information across T1 and T2-weighted image is a way to decrease the overall imaging time. Previous T1-assisted T2 reconstruction methods have mostly focused on image domain using whole-based image fusion approaches. The image domain reconstruction method has the defects of high computational complexity and limited flexibility. To address this issue, we propose a novel multi-contrast imaging method called partition-based k-space synthesis (PKS) which can achieve better reconstruction quality of T2-weighted image by feature fusion.</p><p><strong>Methods: </strong>Concretely, we first decompose fully-sampled T1 k-space data and under-sampled T2 k-space data into two sub-data, separately. Then two new objects are constructed by combining the two sub-T1/T2 data. After that, the two new objects as the whole data to realize the reconstruction of T2-weighted image.</p><p><strong>Results: </strong>Experimental results showed that the developed PKS scheme can achieve comparable or better results than using traditional k-space parallel imaging (SAKE) that processes each contrast independently. At the same time, our method showed good adaptability and robustness under different contrast-assisted and T1-T2 ratios. Efficient target modal image reconstruction under various conditions were realized and had excellent performance in restoring image quality and preserving details.</p><p><strong>Conclusions: </strong>This work proposed a PKS multi-contrast method to assist in target mode image reconstruction. We have conducted extensive experiments on different multi-contrast, diverse ratios of T1 to T2 and different sampling masks to demonstrate the generalization and robustness of our proposed model.</p>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":" ","pages":"110297"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mri.2024.110297","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Multi-contrast magnetic resonance imaging is a significant and essential medical imaging technique. However, multi-contrast imaging has longer acquisition time and is easy to cause motion artifacts. In particular, the acquisition time for a T2-weighted image is prolonged due to its longer repetition time (TR). On the contrary, T1-weighted image has a shorter TR. Therefore, utilizing complementary information across T1 and T2-weighted image is a way to decrease the overall imaging time. Previous T1-assisted T2 reconstruction methods have mostly focused on image domain using whole-based image fusion approaches. The image domain reconstruction method has the defects of high computational complexity and limited flexibility. To address this issue, we propose a novel multi-contrast imaging method called partition-based k-space synthesis (PKS) which can achieve better reconstruction quality of T2-weighted image by feature fusion.
Methods: Concretely, we first decompose fully-sampled T1 k-space data and under-sampled T2 k-space data into two sub-data, separately. Then two new objects are constructed by combining the two sub-T1/T2 data. After that, the two new objects as the whole data to realize the reconstruction of T2-weighted image.
Results: Experimental results showed that the developed PKS scheme can achieve comparable or better results than using traditional k-space parallel imaging (SAKE) that processes each contrast independently. At the same time, our method showed good adaptability and robustness under different contrast-assisted and T1-T2 ratios. Efficient target modal image reconstruction under various conditions were realized and had excellent performance in restoring image quality and preserving details.
Conclusions: This work proposed a PKS multi-contrast method to assist in target mode image reconstruction. We have conducted extensive experiments on different multi-contrast, diverse ratios of T1 to T2 and different sampling masks to demonstrate the generalization and robustness of our proposed model.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.