Differences in Network Functional Connectivity in Response to Sub-Symptomatic Exercise Between Elite Adult Athletes after Sport-Related Concussion and Healthy Matched Controls: A Pilot Study.
Jessica Coenen, Franziska van den Bongard, Anne Carina Delling, Claus Reinsberger
{"title":"Differences in Network Functional Connectivity in Response to Sub-Symptomatic Exercise Between Elite Adult Athletes after Sport-Related Concussion and Healthy Matched Controls: A Pilot Study.","authors":"Jessica Coenen, Franziska van den Bongard, Anne Carina Delling, Claus Reinsberger","doi":"10.1089/neu.2023.0629","DOIUrl":null,"url":null,"abstract":"<p><p>Resting-state electroencephalography (rsEEG) has developed as a method to explore functional network alterations related to sport-related concussion (SRC). Although exercise is an integral part of an athlete's return to sport (RTS) protocol, our understanding of the effects of exercise on (impaired) brain network activity in elite adult athletes is limited. However, this information may be beneficial to inform recovery and RTS progressions. Recording (128-channel) rsEEG datasets before and after a standardized moderate aerobic bike exercise test, this study aimed to explore functional connectivity patterns in whole brain and relevant functional networks in a group of elite adult athletes post-injury compared with healthy matched controls. The following networks were selected <i>a priori</i>: whole brain (68 regions of interest [ROIs]), default mode network (14 ROIs), central autonomic network (CAN, 24 ROIs), and visual network (8 ROIs). Twenty-one SRC athletes and 21 age-, sex-, sport type-, and skill level-matched healthy controls participated in this study. The SRC athletes were recruited during their RTS protocol (days since injury: 2-140 days). All athletes were able to achieve the exercise goal of reaching a moderate intensity (70% of their age-calculated maximum heart rate) while staying sub-symptomatic. Before and after exercise, functional connectivity was calculated by the phase locking value, in the alpha band (7-13 Hz). Mann-Whitney U and Wilcoxon signed rank tests were used to explore neurophysiological differences between and within groups, respectively. Whole-brain connectivity increased significantly from pre- to post-exercise within both groups (SRC: 0.264-0.284; <i>p</i> = 0.011 vs. controls: 0.253-0.257; <i>p</i> = 0.011). While CAN connectivity significantly increased only within the SRC group from pre-(0.298) to post-exercise (0.317; <i>p</i> = 0.003). Although all athletes reached their exercise goal without exacerbation of symptoms, the impact of exercise on the CAN appears to be greater for the SRC athletes, than matched healthy controls. The potential clinical significance of this finding is that it may have revealed an underlying mechanism for the cardiac autonomic alterations post-injury. This study merits further investigation into the CAN, as a network of interest more closely aligned with the clinical features (e.g., autonomic dysfunction) during athletes' RTS.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2023.0629","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resting-state electroencephalography (rsEEG) has developed as a method to explore functional network alterations related to sport-related concussion (SRC). Although exercise is an integral part of an athlete's return to sport (RTS) protocol, our understanding of the effects of exercise on (impaired) brain network activity in elite adult athletes is limited. However, this information may be beneficial to inform recovery and RTS progressions. Recording (128-channel) rsEEG datasets before and after a standardized moderate aerobic bike exercise test, this study aimed to explore functional connectivity patterns in whole brain and relevant functional networks in a group of elite adult athletes post-injury compared with healthy matched controls. The following networks were selected a priori: whole brain (68 regions of interest [ROIs]), default mode network (14 ROIs), central autonomic network (CAN, 24 ROIs), and visual network (8 ROIs). Twenty-one SRC athletes and 21 age-, sex-, sport type-, and skill level-matched healthy controls participated in this study. The SRC athletes were recruited during their RTS protocol (days since injury: 2-140 days). All athletes were able to achieve the exercise goal of reaching a moderate intensity (70% of their age-calculated maximum heart rate) while staying sub-symptomatic. Before and after exercise, functional connectivity was calculated by the phase locking value, in the alpha band (7-13 Hz). Mann-Whitney U and Wilcoxon signed rank tests were used to explore neurophysiological differences between and within groups, respectively. Whole-brain connectivity increased significantly from pre- to post-exercise within both groups (SRC: 0.264-0.284; p = 0.011 vs. controls: 0.253-0.257; p = 0.011). While CAN connectivity significantly increased only within the SRC group from pre-(0.298) to post-exercise (0.317; p = 0.003). Although all athletes reached their exercise goal without exacerbation of symptoms, the impact of exercise on the CAN appears to be greater for the SRC athletes, than matched healthy controls. The potential clinical significance of this finding is that it may have revealed an underlying mechanism for the cardiac autonomic alterations post-injury. This study merits further investigation into the CAN, as a network of interest more closely aligned with the clinical features (e.g., autonomic dysfunction) during athletes' RTS.
期刊介绍:
Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.