A Graph-Based Machine-Learning Approach Combined with Optical Measurements to Understand Beating Dynamics of Cardiomyocytes.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Ziqian Wu, Jiyoon Park, Paul R Steiner, Bo Zhu, John X J Zhang
{"title":"A Graph-Based Machine-Learning Approach Combined with Optical Measurements to Understand Beating Dynamics of Cardiomyocytes.","authors":"Ziqian Wu, Jiyoon Park, Paul R Steiner, Bo Zhu, John X J Zhang","doi":"10.1089/cmb.2024.0491","DOIUrl":null,"url":null,"abstract":"<p><p>The development of computational models for the prediction of cardiac cellular dynamics remains a challenge due to the lack of first-principled mathematical models. We develop a novel machine-learning approach hybridizing physics simulation and graph networks to deliver robust predictions of cardiomyocyte dynamics. Embedded with inductive physical priors, the proposed constraint-based interaction neural projection (CINP) algorithm can uncover hidden physical constraints from sparse image data on a small set of beating cardiac cells and provide robust predictions for heterogenous large-scale cell sets. We also implement an in vitro culture and imaging platform for cellular motion and calcium transient analysis to validate the model. We showcase our model's efficacy by predicting complex organoid cellular behaviors in both in silico and in vitro settings.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0491","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of computational models for the prediction of cardiac cellular dynamics remains a challenge due to the lack of first-principled mathematical models. We develop a novel machine-learning approach hybridizing physics simulation and graph networks to deliver robust predictions of cardiomyocyte dynamics. Embedded with inductive physical priors, the proposed constraint-based interaction neural projection (CINP) algorithm can uncover hidden physical constraints from sparse image data on a small set of beating cardiac cells and provide robust predictions for heterogenous large-scale cell sets. We also implement an in vitro culture and imaging platform for cellular motion and calcium transient analysis to validate the model. We showcase our model's efficacy by predicting complex organoid cellular behaviors in both in silico and in vitro settings.

基于图的机器学习方法结合光学测量来理解心肌细胞的跳动动力学。
由于缺乏第一性原理的数学模型,用于预测心脏细胞动力学的计算模型的发展仍然是一个挑战。我们开发了一种新的机器学习方法,将物理模拟和图形网络相结合,以提供心肌细胞动力学的稳健预测。本文提出的基于约束的交互神经投影(CINP)算法嵌入归纳物理先验,可以从一小组跳动的心脏细胞的稀疏图像数据中发现隐藏的物理约束,并为异构大规模细胞集提供鲁棒预测。我们还实现了体外培养和成像平台,用于细胞运动和钙瞬态分析,以验证模型。我们通过在计算机和体外环境中预测复杂的类器官细胞行为来展示我们的模型的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信