Ellen van Hulst, Mario G Báez-Yáñez, Ayodeji L Adams, Geert Jan Biessels, Jacobus J M Zwanenburg
{"title":"The heartbeat induces local volumetric compression in the healthy human brain: a 7 T magnetic resonance imaging study on brain tissue pulsations.","authors":"Ellen van Hulst, Mario G Báez-Yáñez, Ayodeji L Adams, Geert Jan Biessels, Jacobus J M Zwanenburg","doi":"10.1098/rsfs.2024.0032","DOIUrl":null,"url":null,"abstract":"<p><p>Intracerebral blood volume changes along the cardiac cycle cause volumetric strain in brain tissue, measurable with displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Individual volumetric strain maps show compressing and expanding voxels, raising the question whether systolic compressions reflect a physiological phenomenon. In DENSE data from nine healthy volunteers, voxels were grouped into three clusters according to volumetric strain in a tissue mask excluding extracerebral blood vessels and cerebrospinal fluid using a two-stage clustering approach. To confirm the physiological source of the compressions, data from a patient with a cranial opening was analysed. Spatial patterns of compressing and expanding clusters were matched to high-resolution anatomical scans, acquired in one additional individual. All healthy subjects consistently showed a cluster with compressive volumetric strain during systole, covering 10.2% [7.3-13.1%] (mean [95% confidence interval]) of the tissue mask, besides two expansion clusters. In the patient, no compression was observed. Although the compression cluster did not consistently co-localize with intracerebral veins or perivascular spaces on the anatomical scans, the first-stage clustering results suggested that the distinction between the clusters has a (peri)vascular source. In conclusion, brain tissue shows heartbeat-induced volumetric compressions, possibly indicating compression of porous structures such as intracerebral veins or perivascular spaces.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"14 6","pages":"20240032"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intracerebral blood volume changes along the cardiac cycle cause volumetric strain in brain tissue, measurable with displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Individual volumetric strain maps show compressing and expanding voxels, raising the question whether systolic compressions reflect a physiological phenomenon. In DENSE data from nine healthy volunteers, voxels were grouped into three clusters according to volumetric strain in a tissue mask excluding extracerebral blood vessels and cerebrospinal fluid using a two-stage clustering approach. To confirm the physiological source of the compressions, data from a patient with a cranial opening was analysed. Spatial patterns of compressing and expanding clusters were matched to high-resolution anatomical scans, acquired in one additional individual. All healthy subjects consistently showed a cluster with compressive volumetric strain during systole, covering 10.2% [7.3-13.1%] (mean [95% confidence interval]) of the tissue mask, besides two expansion clusters. In the patient, no compression was observed. Although the compression cluster did not consistently co-localize with intracerebral veins or perivascular spaces on the anatomical scans, the first-stage clustering results suggested that the distinction between the clusters has a (peri)vascular source. In conclusion, brain tissue shows heartbeat-induced volumetric compressions, possibly indicating compression of porous structures such as intracerebral veins or perivascular spaces.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.