Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI.

IF 7 2区 医学 Q1 BIOLOGY
Md Faysal Ahamed, Fariya Bintay Shafi, Md Nahiduzzaman, Mohamed Arselene Ayari, Amith Khandakar
{"title":"Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI.","authors":"Md Faysal Ahamed, Fariya Bintay Shafi, Md Nahiduzzaman, Mohamed Arselene Ayari, Amith Khandakar","doi":"10.1016/j.compbiomed.2024.109503","DOIUrl":null,"url":null,"abstract":"<p><p>GI abnormalities significantly increase mortality rates and impose considerable strain on healthcare systems, underscoring the essential requirement for rapid detection, precise diagnosis, and efficient strategic treatment. To develop a CAD system, this study aims to automatically classify GI disorders utilizing various deep learning methodologies. The proposed system features a three-stage lightweight architecture, consisting of a feature extractor using PSE-CNN, a feature selector employing PCA, and a classifier based on DELM. The framework, designed with only 24 layers and 1.25 million parameters, is employed on the largest dataset, GastroVision, containing 8000 images of 27 GI disorders. To improve visual clarity, a sequential preprocessing strategy is implemented. The model's robustness is evaluated through 5-fold cross-validation. Additionally, several XAI methods, namely Grad-CAM, heatmaps, saliency maps, SHAP, and activation feature maps, are used to explore the model's interpretability. Statistical significance is ensured by calculating the p-value, demonstrating the framework's reliability. The proposed model PSE-CNN-PCA-DELM has achieved outstanding results in the first stage, categorizing the diseases' positions into three primary classes, with average accuracy (97.24 %), precision (97.33 ± 0.01 %), recall (97.24 ± 0.01 %), F1-score (97.33 ± 0.01 %), ROC-AUC (99.38 %), and AUC-PR (98.94 %). In the second stage, the dataset is further divided into nine separate classes, considering the overall disease characteristics, and achieves excellent outcomes with average performance rates of 90.00 %, 89.71 ± 0.11 %, 89.59 ± 0.14 %, 89.51 ± 0.12 %, 98.49 %, and 94.63 %, respectively. The third stage involves a more detailed classification into twenty-seven classes, maintaining strong performance with scores of 93.00 %, 82.69 ± 0.37 %, 83.00 ± 0.38 %, 81.54 ± 0.35 %, 97.38 %, and 88.03 %, respectively. The framework's compact size of 14.88 megabytes and average testing time of 59.17 milliseconds make it highly efficient. Its effectiveness is further validated through comparisons with several TL approaches. Practically, the framework is extremely resilient for clinical implementation.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109503"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109503","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

GI abnormalities significantly increase mortality rates and impose considerable strain on healthcare systems, underscoring the essential requirement for rapid detection, precise diagnosis, and efficient strategic treatment. To develop a CAD system, this study aims to automatically classify GI disorders utilizing various deep learning methodologies. The proposed system features a three-stage lightweight architecture, consisting of a feature extractor using PSE-CNN, a feature selector employing PCA, and a classifier based on DELM. The framework, designed with only 24 layers and 1.25 million parameters, is employed on the largest dataset, GastroVision, containing 8000 images of 27 GI disorders. To improve visual clarity, a sequential preprocessing strategy is implemented. The model's robustness is evaluated through 5-fold cross-validation. Additionally, several XAI methods, namely Grad-CAM, heatmaps, saliency maps, SHAP, and activation feature maps, are used to explore the model's interpretability. Statistical significance is ensured by calculating the p-value, demonstrating the framework's reliability. The proposed model PSE-CNN-PCA-DELM has achieved outstanding results in the first stage, categorizing the diseases' positions into three primary classes, with average accuracy (97.24 %), precision (97.33 ± 0.01 %), recall (97.24 ± 0.01 %), F1-score (97.33 ± 0.01 %), ROC-AUC (99.38 %), and AUC-PR (98.94 %). In the second stage, the dataset is further divided into nine separate classes, considering the overall disease characteristics, and achieves excellent outcomes with average performance rates of 90.00 %, 89.71 ± 0.11 %, 89.59 ± 0.14 %, 89.51 ± 0.12 %, 98.49 %, and 94.63 %, respectively. The third stage involves a more detailed classification into twenty-seven classes, maintaining strong performance with scores of 93.00 %, 82.69 ± 0.37 %, 83.00 ± 0.38 %, 81.54 ± 0.35 %, 97.38 %, and 88.03 %, respectively. The framework's compact size of 14.88 megabytes and average testing time of 59.17 milliseconds make it highly efficient. Its effectiveness is further validated through comparisons with several TL approaches. Practically, the framework is extremely resilient for clinical implementation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信