Boosted Na+-MnO2 supercapacitor performance via strong metal support interaction.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Kailun Wang, Junjie Wang, Jun Qian, Qijun Yu, Jia-Qi Bai, Yuxue Wei, Jingshuai Chen, Mingyuan Wu, Song Sun, Chang-Jie Mao
{"title":"Boosted Na<sup>+</sup>-MnO<sub>2</sub> supercapacitor performance via strong metal support interaction.","authors":"Kailun Wang, Junjie Wang, Jun Qian, Qijun Yu, Jia-Qi Bai, Yuxue Wei, Jingshuai Chen, Mingyuan Wu, Song Sun, Chang-Jie Mao","doi":"10.1016/j.jcis.2024.11.252","DOIUrl":null,"url":null,"abstract":"<p><p>MnO<sub>2</sub> is widely utilized as an electrode material in supercapacitors. However, overcoming challenges such as sluggish ion migration, aggregate tendency, and low conductivity is imperative for optimizing MnO<sub>2</sub>-based supercapacitors. Herein, NaMnO<sub>4</sub> was employed as the Mn precursor to introducing a higher concentration of small Na<sup>+</sup> ions into the layer structure of δ-MnO<sub>2</sub>. This elevated Na concentration fosters efficient ion migration within the MnO<sub>2</sub> lattice. Moreover, Na<sup>+</sup>-MnO<sub>2</sub> was deposited onto Cu/graphene (Cu/G) composites. Leveraging the strong metal-support interactions (SMSI) between Cu and graphene, the resulting composite demonstrates enhanced conductivity and reduced aggregation. Combining MnO<sub>2</sub> with Cu/G resulted in a conductivity of 5.78 × 10<sup>-3</sup> S cm<sup>-1</sup>, which is significantly better than that of MnO<sub>2</sub>. The composite material exhibits an exceptional electrochemical performance, boasting a specific capacitance of 655 F g<sup>-1</sup> at 1 A g<sup>-1</sup> and impressive long-term stability, retaining 95 % of its capacitance after 4000 cycles at 10 A g<sup>-1</sup>. Additionally, a 1.6 V asymmetric supercapacitor was assembled, featuring carbon as the anode, Cu/G/MnO<sub>2</sub> as the cathode, and 1 M KOH as the electrolyte, achieving a superior specific capacitance of 75 F g<sup>-1</sup> at 1 A g<sup>-1</sup>. Cu/G/MnO<sub>2</sub>//carbon demonstrates a maximum energy density of 27 Wh kg<sup>-1</sup> at a power density of 0.8 W kg<sup>-1</sup>. This study underscores a facile strategy to enhance MnO<sub>2</sub>-based supercapacitors by leveraging the SMSI effect for boosted performance.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"865-874"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.11.252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MnO2 is widely utilized as an electrode material in supercapacitors. However, overcoming challenges such as sluggish ion migration, aggregate tendency, and low conductivity is imperative for optimizing MnO2-based supercapacitors. Herein, NaMnO4 was employed as the Mn precursor to introducing a higher concentration of small Na+ ions into the layer structure of δ-MnO2. This elevated Na concentration fosters efficient ion migration within the MnO2 lattice. Moreover, Na+-MnO2 was deposited onto Cu/graphene (Cu/G) composites. Leveraging the strong metal-support interactions (SMSI) between Cu and graphene, the resulting composite demonstrates enhanced conductivity and reduced aggregation. Combining MnO2 with Cu/G resulted in a conductivity of 5.78 × 10-3 S cm-1, which is significantly better than that of MnO2. The composite material exhibits an exceptional electrochemical performance, boasting a specific capacitance of 655 F g-1 at 1 A g-1 and impressive long-term stability, retaining 95 % of its capacitance after 4000 cycles at 10 A g-1. Additionally, a 1.6 V asymmetric supercapacitor was assembled, featuring carbon as the anode, Cu/G/MnO2 as the cathode, and 1 M KOH as the electrolyte, achieving a superior specific capacitance of 75 F g-1 at 1 A g-1. Cu/G/MnO2//carbon demonstrates a maximum energy density of 27 Wh kg-1 at a power density of 0.8 W kg-1. This study underscores a facile strategy to enhance MnO2-based supercapacitors by leveraging the SMSI effect for boosted performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信