Peiyuan Sun, Shuanggou Zhang, Yana Qu, Xuanyou Li, Guirui Chen, Xuanjun Wang, Jun Sheng, Jing Wang
{"title":"Coccinic acid exhibits anti-tumor efficacy against NSCLC harboring EGFR L858R/T790M mutation via the EGFR/STAT3 pathway.","authors":"Peiyuan Sun, Shuanggou Zhang, Yana Qu, Xuanyou Li, Guirui Chen, Xuanjun Wang, Jun Sheng, Jing Wang","doi":"10.1016/j.bioorg.2024.108038","DOIUrl":null,"url":null,"abstract":"<p><p>Epidermal growth factor receptor (EGFR) is a starring target for the treatment of non-small cell lung cancer (NSCLC). EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been used to treat NSCLC patients with EGFR-activating mutations. However, most patients invariably develop resistance to these agents due to the occurrence of novel mutations at the EGFR kinase domain. There is an urgent need to develop more effective therapy strategies to provide more selection for patients with NSCLC. Coccinic acid was reported to exerts potential anti-tumor effects, but its mechanism has not been elucidated and warrants investigation. In this study, coccinic acid was shown to inhibit cell proliferation on cells harboring L858R/T790M mutant EGFR by suppressing p-EGFR and p-STAT3. It was also shown that coccinic acid promoted cell cycle distribution and showed a potent apoptosis-inducing efficacy. Further results in vivo assays demonstrated that coccinic acid reduced tumor growth of NCI-H1975 xenograft in nude mice via the EGFR/STAT3 signaling. Moreover, these effects are involving in the binding of coccinic acid to the EGFR extracellular domain. In conclusion, our finding demonstrated that coccinic acid may be utilized as a potential novel candidate for NSCLC with EGFR L858R/T790M mutation.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"108038"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.108038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epidermal growth factor receptor (EGFR) is a starring target for the treatment of non-small cell lung cancer (NSCLC). EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been used to treat NSCLC patients with EGFR-activating mutations. However, most patients invariably develop resistance to these agents due to the occurrence of novel mutations at the EGFR kinase domain. There is an urgent need to develop more effective therapy strategies to provide more selection for patients with NSCLC. Coccinic acid was reported to exerts potential anti-tumor effects, but its mechanism has not been elucidated and warrants investigation. In this study, coccinic acid was shown to inhibit cell proliferation on cells harboring L858R/T790M mutant EGFR by suppressing p-EGFR and p-STAT3. It was also shown that coccinic acid promoted cell cycle distribution and showed a potent apoptosis-inducing efficacy. Further results in vivo assays demonstrated that coccinic acid reduced tumor growth of NCI-H1975 xenograft in nude mice via the EGFR/STAT3 signaling. Moreover, these effects are involving in the binding of coccinic acid to the EGFR extracellular domain. In conclusion, our finding demonstrated that coccinic acid may be utilized as a potential novel candidate for NSCLC with EGFR L858R/T790M mutation.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.