Chemoenzymatic Synthesis Planning Guided by Reaction Type Score.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Hongxiang Li, Xuan Liu, Guangde Jiang, Huimin Zhao
{"title":"Chemoenzymatic Synthesis Planning Guided by Reaction Type Score.","authors":"Hongxiang Li, Xuan Liu, Guangde Jiang, Huimin Zhao","doi":"10.1021/acs.jcim.4c01525","DOIUrl":null,"url":null,"abstract":"<p><p>Thanks to the growing interest in computer-aided synthesis planning (CASP), a wide variety of retrosynthesis and retrobiosynthesis tools have been developed in the past decades. However, synthesis planning tools for multistep chemoenzymatic reactions are still rare despite the widespread use of enzymatic reactions in chemical synthesis. Herein, we report a reaction type score (RTscore)-guided chemoenzymatic synthesis planning (RTS-CESP) strategy. Briefly, the RTscore is trained using a text-based convolutional neural network (TextCNN) to distinguish synthesis reactions from decomposition reactions and evaluate synthesis efficiency. Once multiple chemical synthesis routes are generated by a retrosynthesis tool for a target molecule, RTscore is used to rank them and find the step(s) that can be replaced by enzymatic reactions to improve synthesis efficiency. As proof of concept, RTS-CESP was applied to 10 molecules with known chemoenzymatic synthesis routes in the literature and was able to predict all of them with six being the top-ranked routes. Moreover, RTS-CESP was employed for 1000 molecules in the boutique database and was able to predict the chemoenzymatic synthesis routes for 554 molecules, outperforming ASKCOS, a state-of-the-art chemoenzymatic synthesis planning tool. Finally, RTS-CESP was used to design a new chemoenzymatic synthesis route for the FDA-approved drug Alclofenac, which was shorter than the literature-reported route and has been experimentally validated.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"9240-9248"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01525","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thanks to the growing interest in computer-aided synthesis planning (CASP), a wide variety of retrosynthesis and retrobiosynthesis tools have been developed in the past decades. However, synthesis planning tools for multistep chemoenzymatic reactions are still rare despite the widespread use of enzymatic reactions in chemical synthesis. Herein, we report a reaction type score (RTscore)-guided chemoenzymatic synthesis planning (RTS-CESP) strategy. Briefly, the RTscore is trained using a text-based convolutional neural network (TextCNN) to distinguish synthesis reactions from decomposition reactions and evaluate synthesis efficiency. Once multiple chemical synthesis routes are generated by a retrosynthesis tool for a target molecule, RTscore is used to rank them and find the step(s) that can be replaced by enzymatic reactions to improve synthesis efficiency. As proof of concept, RTS-CESP was applied to 10 molecules with known chemoenzymatic synthesis routes in the literature and was able to predict all of them with six being the top-ranked routes. Moreover, RTS-CESP was employed for 1000 molecules in the boutique database and was able to predict the chemoenzymatic synthesis routes for 554 molecules, outperforming ASKCOS, a state-of-the-art chemoenzymatic synthesis planning tool. Finally, RTS-CESP was used to design a new chemoenzymatic synthesis route for the FDA-approved drug Alclofenac, which was shorter than the literature-reported route and has been experimentally validated.

以反应类型评分为指导的化学酶合成计划。
由于对计算机辅助合成计划(CASP)的兴趣日益浓厚,在过去的几十年里,各种各样的反转录合成和反转录生物合成工具已经开发出来。然而,尽管酶促反应在化学合成中得到了广泛的应用,但用于多步化学酶促反应的合成规划工具仍然很少。在此,我们报告了一种反应类型评分(RTscore)指导的化学酶合成计划(RTS-CESP)策略。简而言之,RTscore使用基于文本的卷积神经网络(TextCNN)进行训练,以区分合成反应和分解反应,并评估合成效率。一旦一个目标分子的反合成工具产生了多个化学合成路线,RTscore就会对它们进行排序,并找到可以被酶反应取代的步骤,以提高合成效率。作为概念证明,将RTS-CESP应用于文献中已知的10种化学酶合成途径的分子,并能够预测所有这些途径,其中6条是排名最高的途径。此外,RTS-CESP应用于精品数据库中的1000个分子,并能够预测554个分子的化学酶合成路线,优于最先进的化学酶合成计划工具ASKCOS。最后,利用rt - cesp为fda批准的Alclofenac设计了一条新的化学酶合成路线,该路线比文献报道的路线短,并得到了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信