Generation of 1 km high resolution Standardized precipitation evapotranspiration Index for drought monitoring over China using Google Earth Engine

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences
Yile He, Youping Xie, Junchen Liu, Zengyun Hu, Jun Liu, Yuhua Cheng, Lei Zhang, Zhihui Wang, Man Li
{"title":"Generation of 1 km high resolution Standardized precipitation evapotranspiration Index for drought monitoring over China using Google Earth Engine","authors":"Yile He, Youping Xie, Junchen Liu, Zengyun Hu, Jun Liu, Yuhua Cheng, Lei Zhang, Zhihui Wang, Man Li","doi":"10.1016/j.jag.2024.104296","DOIUrl":null,"url":null,"abstract":"Under the background of climate change and global warming, extreme drought events in China are becoming increasingly frequent. Drought is one of the primary natural causes of damage to China’s agriculture, economy, and environment, making timely, accurate, and high-resolution drought monitoring particularly crucial. The global standardized precipitation − evapotranspiration index database (SPEIbase) is a widely accepted and used global-scale drought monitoring product. However, limited by its spatial resolution of 0.5 degrees, it is difficult to describe the local spatio-temporal structure of drought. How to improve its spatial resolution while maintaining spatio-temporal consistency is one of the current research hotspots. Based on the response of vegetation growth status to drought, this paper proposes a simple and feasible SPEI prediction method, which improves the resolution of SPEIbase from 0.5 degrees to 1 km. Sixteen remote sensing inversion indices, reflectance and elevation data related to drought were selected from Google Earth Engine (GEE) as features. After preprocessing such as gridding and sample balancing, a random forest regression model was constructed to achieve high spatial resolution prediction of SPEI. SPEI with time scales of 1, 3, 6, 9, 12 and 24 months in July 2020, August 2019 and August 2018 in China was selected for experiments. The accuracy of 1 km resolution SPEI was evaluated through metrics such as root mean square error (RMSE), Pearson correlation coefficient (PCC) and determination coefficient (R<ce:sup loc=\"post\">2</ce:sup>). At the same time, it was compared with the existing 1 km resolution SPEI dataset and the site-scale SPEI values. The results show that the method in this paper can obtain accurate prediction results more stably. The PCC and R<ce:sup loc=\"post\">2</ce:sup> of different months and multiple time scales are all higher than 0.9 and 0.8, and the RMSE is lower than 0.4, showing a good application prospect. Despite the good consistency between the Proposed SPEI and SPEIbase with the site-scale SPEI values, there is still significant room for improvement.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"10 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104296","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Under the background of climate change and global warming, extreme drought events in China are becoming increasingly frequent. Drought is one of the primary natural causes of damage to China’s agriculture, economy, and environment, making timely, accurate, and high-resolution drought monitoring particularly crucial. The global standardized precipitation − evapotranspiration index database (SPEIbase) is a widely accepted and used global-scale drought monitoring product. However, limited by its spatial resolution of 0.5 degrees, it is difficult to describe the local spatio-temporal structure of drought. How to improve its spatial resolution while maintaining spatio-temporal consistency is one of the current research hotspots. Based on the response of vegetation growth status to drought, this paper proposes a simple and feasible SPEI prediction method, which improves the resolution of SPEIbase from 0.5 degrees to 1 km. Sixteen remote sensing inversion indices, reflectance and elevation data related to drought were selected from Google Earth Engine (GEE) as features. After preprocessing such as gridding and sample balancing, a random forest regression model was constructed to achieve high spatial resolution prediction of SPEI. SPEI with time scales of 1, 3, 6, 9, 12 and 24 months in July 2020, August 2019 and August 2018 in China was selected for experiments. The accuracy of 1 km resolution SPEI was evaluated through metrics such as root mean square error (RMSE), Pearson correlation coefficient (PCC) and determination coefficient (R2). At the same time, it was compared with the existing 1 km resolution SPEI dataset and the site-scale SPEI values. The results show that the method in this paper can obtain accurate prediction results more stably. The PCC and R2 of different months and multiple time scales are all higher than 0.9 and 0.8, and the RMSE is lower than 0.4, showing a good application prospect. Despite the good consistency between the Proposed SPEI and SPEIbase with the site-scale SPEI values, there is still significant room for improvement.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信