Spatiotemporal variation of spring phenology and the corresponding scale effects and uncertainties: A case study in southwestern China

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences
Chongjing Zhu, Xiaojun She, Xiaojie Gao, Yajun Huang, Yelu Zeng, Chao Ding, Dongjie Fu, Jing Shao, Yao Li
{"title":"Spatiotemporal variation of spring phenology and the corresponding scale effects and uncertainties: A case study in southwestern China","authors":"Chongjing Zhu, Xiaojun She, Xiaojie Gao, Yajun Huang, Yelu Zeng, Chao Ding, Dongjie Fu, Jing Shao, Yao Li","doi":"10.1016/j.jag.2024.104294","DOIUrl":null,"url":null,"abstract":"Understanding terrestrial vegetation phenology—the timing of life-cycle events—is crucial for insights into ecosystem energy and material cycles. Land surface phenology (LSP) derived from satellite observations has become a critical tool for tracking vegetation phenology across large spatial scales. However, LSP data from coarse spatial resolutions often mix phenological signals from multiple land cover types, a limitation that fine-resolution satellite data can help overcome. Recent studies indicate that spring phenology derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) data tends to be biased earlier than that from the 30-m Landsat data due to scale effects. The extent of this bias across other satellite sensors and its impact on long-term phenological trends remains unclear. Additionally, few studies have used medium- to high-resolution LSP data to investigate southwestern China, partly due to limited data availability, which may exacerbate uncertainties related to scale effects in LSP observations. To address these gaps, we selected Jinfo Mountain in southwestern China—a region with high spatial heterogeneity—to analyze the spatiotemporal patterns of spring phenology and examine associated scale effects and uncertainties. We applied two phenology retrieval methods to multi-resolution LSP data from various sensors: 30-m Landsat (1984–2023), 250-m MODIS (2002–2021), 500-m MODIS (2000–2023), 1-km SPOT (1999–2019), and 8-km AVHRR (1982–2022). Our findings revealed that all sensors consistently captured the spatial patterns of spring phenology, indicating an advancing trend of 6–8 days per decade, though the trend’s magnitude varied notably across sensors. Data quality, rather than retrieval methods, emerged as the primary source of uncertainty in characterizing phenological dynamics, with elevation contributing significantly to bias due to its negative correlation with the number of available clear observations. Moreover, we found that the MODIS-Landsat bias in spring phenology may not generalize across other coarse-to-fine LSP comparisons. This study provides valuable insights into phenology in the understudied region of southwestern China, highlighting the importance of spatial resolution and sensor characteristics for accurate plant phenology mapping and monitoring.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"15 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104294","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding terrestrial vegetation phenology—the timing of life-cycle events—is crucial for insights into ecosystem energy and material cycles. Land surface phenology (LSP) derived from satellite observations has become a critical tool for tracking vegetation phenology across large spatial scales. However, LSP data from coarse spatial resolutions often mix phenological signals from multiple land cover types, a limitation that fine-resolution satellite data can help overcome. Recent studies indicate that spring phenology derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) data tends to be biased earlier than that from the 30-m Landsat data due to scale effects. The extent of this bias across other satellite sensors and its impact on long-term phenological trends remains unclear. Additionally, few studies have used medium- to high-resolution LSP data to investigate southwestern China, partly due to limited data availability, which may exacerbate uncertainties related to scale effects in LSP observations. To address these gaps, we selected Jinfo Mountain in southwestern China—a region with high spatial heterogeneity—to analyze the spatiotemporal patterns of spring phenology and examine associated scale effects and uncertainties. We applied two phenology retrieval methods to multi-resolution LSP data from various sensors: 30-m Landsat (1984–2023), 250-m MODIS (2002–2021), 500-m MODIS (2000–2023), 1-km SPOT (1999–2019), and 8-km AVHRR (1982–2022). Our findings revealed that all sensors consistently captured the spatial patterns of spring phenology, indicating an advancing trend of 6–8 days per decade, though the trend’s magnitude varied notably across sensors. Data quality, rather than retrieval methods, emerged as the primary source of uncertainty in characterizing phenological dynamics, with elevation contributing significantly to bias due to its negative correlation with the number of available clear observations. Moreover, we found that the MODIS-Landsat bias in spring phenology may not generalize across other coarse-to-fine LSP comparisons. This study provides valuable insights into phenology in the understudied region of southwestern China, highlighting the importance of spatial resolution and sensor characteristics for accurate plant phenology mapping and monitoring.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信