{"title":"Properties optimisation of nanostructures via machine learning: Progress and perspective","authors":"Nurul Akmal Che Lah","doi":"10.1016/j.enganabound.2024.106063","DOIUrl":null,"url":null,"abstract":"Nanostructures play a vast role in the current Internet of NanoThings (IoNT) era due to remarkable properties and features that precisely impart their desired application functions in catalysis, energy and other fields. The exploration in understanding their minute features caused by the flexibility of compositional and complex atomic arrangement from the synthesis reaction widely opens for the in-depth discovery of their search space such as particle size, morphology and structures that controlled the characteristics. A wide range of possible compositions and various lattice atomic arrangements combined with small particle size distribution and large surface area create grand challenges to copy/differentiate their corresponding specific properties. Thus, the employment of machine learning (ML)-based strategies using the closed-loop experimental data from the nanostructure synthesis to help navigate and optimise for the large classes of data attributes related to the size, morphology and other properties from the trained model are reviewed. The data attributes are assisted by discussions of the selected case studies from the recent literature that highlight different condition nanostructures. The review concludes with a discussion of perspectives on the major challenges in the implementation of ML data-driven design in the field of nanostructure synthesis.","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"23 2 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enganabound.2024.106063","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructures play a vast role in the current Internet of NanoThings (IoNT) era due to remarkable properties and features that precisely impart their desired application functions in catalysis, energy and other fields. The exploration in understanding their minute features caused by the flexibility of compositional and complex atomic arrangement from the synthesis reaction widely opens for the in-depth discovery of their search space such as particle size, morphology and structures that controlled the characteristics. A wide range of possible compositions and various lattice atomic arrangements combined with small particle size distribution and large surface area create grand challenges to copy/differentiate their corresponding specific properties. Thus, the employment of machine learning (ML)-based strategies using the closed-loop experimental data from the nanostructure synthesis to help navigate and optimise for the large classes of data attributes related to the size, morphology and other properties from the trained model are reviewed. The data attributes are assisted by discussions of the selected case studies from the recent literature that highlight different condition nanostructures. The review concludes with a discussion of perspectives on the major challenges in the implementation of ML data-driven design in the field of nanostructure synthesis.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.