Ateeb Ahmad Khan, Indra Vir Singh, Bhanu Kumar Mishra, Ramadas Chennamsetti
{"title":"An experimental investigation of fatigue performance and damage distribution mechanism in Bi-Directional GFRP composites","authors":"Ateeb Ahmad Khan, Indra Vir Singh, Bhanu Kumar Mishra, Ramadas Chennamsetti","doi":"10.1016/j.ijfatigue.2024.108735","DOIUrl":null,"url":null,"abstract":"This study presents an experimental investigation of the fatigue performance and damage distribution mechanism of bi-directional GFRP composites. Uniaxial fatigue tests have been conducted under load-control, at stress ratios, R = 0.1, 0.5 and critical stress ratio <mml:math altimg=\"si26.svg\"><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">-</mml:mo><mml:mn>0.9</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>. The influence of gauge length and surface roughness on fatigue life has been examined for R = 0.1. An infrared (IR) camera is employed to monitor temperature evolution and capture thermal images during the fatigue experiments. Fatigue stiffness degradation, energy dissipated per cycle, and severity of damage progression have been analyzed to elucidate the effects of stress levels and mean stress on fatigue performance. At higher stress levels, the damage is intense and localized, resulting in relatively shorter life due to fiber-breakage accompanied by rapid fatigue stiffness degradation. At lower stress levels, the damage is uniformly distributed and less severe, primarily involves stress concentration, resulting in longer fatigue lives. The study highlights the contrasting damage progression mechanisms for tension–tension and tension–compression fatigue. Under tension–tension fatigue, an oval-shaped damage zone forms perpendicular to the loading direction indicating transverse crack propagation, while under tension–compression fatigue, the damage zone aligns parallel to the loading direction indicating longitudinal crack propagation due to compressive loading.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"18 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2024.108735","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an experimental investigation of the fatigue performance and damage distribution mechanism of bi-directional GFRP composites. Uniaxial fatigue tests have been conducted under load-control, at stress ratios, R = 0.1, 0.5 and critical stress ratio (χ=-0.9). The influence of gauge length and surface roughness on fatigue life has been examined for R = 0.1. An infrared (IR) camera is employed to monitor temperature evolution and capture thermal images during the fatigue experiments. Fatigue stiffness degradation, energy dissipated per cycle, and severity of damage progression have been analyzed to elucidate the effects of stress levels and mean stress on fatigue performance. At higher stress levels, the damage is intense and localized, resulting in relatively shorter life due to fiber-breakage accompanied by rapid fatigue stiffness degradation. At lower stress levels, the damage is uniformly distributed and less severe, primarily involves stress concentration, resulting in longer fatigue lives. The study highlights the contrasting damage progression mechanisms for tension–tension and tension–compression fatigue. Under tension–tension fatigue, an oval-shaped damage zone forms perpendicular to the loading direction indicating transverse crack propagation, while under tension–compression fatigue, the damage zone aligns parallel to the loading direction indicating longitudinal crack propagation due to compressive loading.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.