{"title":"Investigation on the ratcheting strain and cyclic softening of viscoelastic soft adhesive under uniaxial and biaxial cyclic loadings","authors":"Jin-Yang Zhang, Jun Zhang","doi":"10.1016/j.ijfatigue.2024.108747","DOIUrl":null,"url":null,"abstract":"Uniaxial and biaxial multi-path cyclic loading experiments were carried out using the plate dumbbell-shaped specimens and the cruciform-shaped specimens prepared by silane-modified polyurethane adhesive, respectively. The uniaxial testing results showed that the stress–strain curve of the material was nonlinear, and its mechanical properties were viscoelastic. The adhesive exhibited cyclic softening and cyclic strain increase (cyclic creep and cyclic strain accumulation) under the tensile cyclic loading. The biaxial multi-path testing results showed that the non-proportional loading path caused additional ratcheting strain, which was related to different loading paths. According to the experimental observation, a uniaxial cyclic constitutive model was proposed. Furthermore, a biaxial cyclic constitutive model of the material was developed by introducing the loading path coefficient. By comparing the model prediction results with the experimental data, it was shown that the evolution of ratcheting strain and cyclic softening of the material under uniaxial cyclic loading was accurately described using the proposed model. Also, the biaxial cyclic constitutive model can well predict the mechanical behaviors of silane-modified polyurethane adhesive under biaxial multi-path cyclic loading.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"20 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2024.108747","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Uniaxial and biaxial multi-path cyclic loading experiments were carried out using the plate dumbbell-shaped specimens and the cruciform-shaped specimens prepared by silane-modified polyurethane adhesive, respectively. The uniaxial testing results showed that the stress–strain curve of the material was nonlinear, and its mechanical properties were viscoelastic. The adhesive exhibited cyclic softening and cyclic strain increase (cyclic creep and cyclic strain accumulation) under the tensile cyclic loading. The biaxial multi-path testing results showed that the non-proportional loading path caused additional ratcheting strain, which was related to different loading paths. According to the experimental observation, a uniaxial cyclic constitutive model was proposed. Furthermore, a biaxial cyclic constitutive model of the material was developed by introducing the loading path coefficient. By comparing the model prediction results with the experimental data, it was shown that the evolution of ratcheting strain and cyclic softening of the material under uniaxial cyclic loading was accurately described using the proposed model. Also, the biaxial cyclic constitutive model can well predict the mechanical behaviors of silane-modified polyurethane adhesive under biaxial multi-path cyclic loading.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.